
Probabilistic Concurrency Testing for Weak Memory Programs
Mingyu Gao

m.gao-2@student.tudelft.nl

Delft University of Technology

Delft, Netherlands

Soham Chakraborty

s.s.chakraborty@tudelft.nl

Delft University of Technology

Delft, Netherlands

Burcu Kulahcioglu Ozkan

b.ozkan@tudelft.nl

Delft University of Technology

Delft, Netherlands

ABSTRACT
The Probabilistic Concurrency Testing (PCT) algorithm that pro-

vides theoretical guarantees on the probability of detecting concur-

rency bugs does not apply to weak memory programs. The PCT

algorithm builds on the interleaving semantics of sequential con-

sistency, which does not hold for weak memory concurrency. It is

because weak memory concurrency allows additional behaviors

that cannot be produced by any interleaving execution.

In this paper, we generalize PCT to address weak memory con-

currency and present Probabilistic Concurrency Testing for Weak

Memory (PCTWM). We empirically evaluate PCTWM on a set of

well-known weak memory program benchmarks in comparison

to the state-of-the-art weak memory testing tool C11Tester. Our

results show that PCTWM can detect concurrency bugs more fre-

quently than C11Tester.

CCS CONCEPTS
• Software and its engineering→ Concurrent programming
structures; Software testing and debugging.

KEYWORDS
Concurrency, Weak memory, Randomized algorithms, Testing

ACM Reference Format:
MingyuGao, SohamChakraborty, and Burcu Kulahcioglu Ozkan. 2023. Prob-

abilistic Concurrency Testing for Weak Memory Programs. In Proceedings

of the 28th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Volume 2 (ASPLOS ’23), March

25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3575693.3575729

1 INTRODUCTION
In the multicore era, shared memory concurrency plays a key role

in improving performance in these architectures. To program these

architectures efficiently, the programming languages are introduc-

ing first-class concurrency primitives [4, 6, 12, 18, 19, 33] to provide

platform-independent abstractions on the hardware and processors.

These concurrency primitives empower programmers to achieve

greater performance from the architectures. However, program-

ming with these primitives is often error-prone due to their subtle

semantics. More specifically, these primitives, as well as the archi-

tectures, exhibit additional behaviors that cannot be explained by

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.

https://doi.org/10.1145/3575693.3575729

traditional thread interleaving semantics, aka sequential consis-

tency (SC). These behaviors are known as weak memory behaviors,

and these concurrency models are known as weak memory models.

Concurrency poses a significant challenge to testing and verifi-

cation approaches, considering the number of possible executions

even under interleaving semantics. Verification techniques perform

sound analyses, but they scale poorly. On the other hand, testing

approaches scale better but lacks soundness. Though concurrency

testing lacks soundness in general, it is always desirable to achieve

some guarantees on the effectiveness of a testing approach.

The Probabilistic Concurrency Testing (PCT) algorithm [8] is a

randomized concurrency testing algorithm for SC programs that

provides strong theoretical guarantees on the probability of detect-

ing bugs. The probabilistic guarantees of PCT rely on the notion of

bug depth, i.e., the minimum number of ordering constraints between

the concurrent events in a program. Given bug depth 𝑑 as a test

parameter, PCT characterizes the set of executions with 𝑑 ordering

constraints and samples a test execution from that set. Focusing on

the executions with a certain bug depth significantly reduces the

sample set. Unlike naive random testing algorithms that detect a

concurrency bug with a probability that is exponentially low in the

number of program events 𝑛, PCT guarantees a probability that is

exponentially low only in 𝑑 .

In this scenario, a natural question arises: can we apply PCT for

testing weak memory programs? We investigate this question in

this paper and observe that the theoretical guarantee of the PCT

algorithm does not apply to testing weak memory programs. It is

because weak memory concurrency relaxes the SC requirements

and allows a more extensive set of program behaviors, many of

which cannot be produced by any interleaving executions in SC.

More specifically, the PCT algorithm builds on the notion of bug

depth that is designed for the interleaving semantics of sequential

consistency, which does not capture weak memory concurrency.

In this paper, we generalize PCT to address weak memory con-

currency and present Probabilistic Concurrency Testing for Weak

Memory (PCTWM). For this, we revise the definition of concurrency

bug depth and generalize it to capture weak memory concurrency.

We define bug depth as the minimum number of communication

relations between the concurrent events in an execution regardless

of their scheduling order. We show that the traditional definition of

bug depth under SC corresponds to a specific case of our definition,

in which the communication relations correspond to the thread

interleavings.

Based on our bug depth definition, we devise the PCTWM al-

gorithm that extends the theoretical guarantees of PCT for weak

memory concurrency. Similar to PCT, PCTWM provides a theo-

retical lower bound on the probability of detecting concurrency

bugs that is exponential only in the depth bound 𝑑 . Different from

PCT, which samples a test execution with 𝑑 ordering requirements,

https://doi.org/10.1145/3575693.3575729
https://doi.org/10.1145/3575693.3575729

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

PCTWM samples a test execution with 𝑑 communication relations

between the concurrent program events.

We implemented the PCTWMalgorithm on top of C11Tester [32],

the state-of-the-art testing framework for weak memory programs.

We evaluated its performance in detecting weak memory concur-

rency bugs on a set of well-known weak memory program bench-

marks in comparison to the C11Tester concurrency testing algo-

rithm. Our results show that PCTWM can detect concurrency bugs

more frequently than C11Tester.

Outline and Contributions. Section 2 provides the required

background on weak memory concurrency and PCT. Section 3

presents an overview of our approach. Section 4 discusses the ax-

iomatic model of weak memory concurrency model which focus

in this work. Section 5 presents the PCTWM algorithm. Section 6

provides the details on our experimental evaluation and results.

2 BACKGROUND
2.1 Weak Memory Concurrency
In shared memory concurrency, threads communicate through

shared memory accesses. The behaviors of these programs are

usually explained by thread interleavings, where shared memory

accesses in each thread execute in syntactic order, and threads

interleave arbitrarily. This is formally known as sequential con-

sistency (SC) [28]. However, concurrent systems usually exhibit

additional program behaviors which cannot be explained by inter-

leaving execution and follow a particular weak memory concurrency

model.

Consider Program SB as an example, where 𝑋 and 𝑌 are shared

variables initialized to zero, and the program has two concurrently

running threads.

𝑋 = 𝑌 = 0

𝑋 = 1;

𝑎 = 𝑌 ;

𝑌 = 1;

𝑏 = 𝑋 ;

assert(𝑎 == 1 | | 𝑏 == 1)

(SB)

No interleaving execution violates the assertion in Program SB
as at least one of the writes takes place before the reads. However,

various weak memory architectures such as x86 [40] or Arm [2]

allow the non-SC outcome 𝑎 = 𝑏 = 0 and violate the assertion. To

program these architectures, programming languages like C/C++

[18, 19] provides platform-independent abstractions which also

allow this outcome and various other non-SC outcomes in general.

C/C++ Concurrency [18, 19]. C/C++ has different kinds of

accesses that affect the behavior of a shared memory concurrent

program. To begin with, C11 introduces atomic accesses of four

kinds: load, store, atomic update (RMW) such as compare-and-swap

and atomic increment, and memory fence. Each atomic access is

attached with a memory order from relaxed (rlx), acquire (acq), re-

lease (rel), acquire-release (acq-rel), sequentially-consistent (sc).

In addition, C11 provides shared memory load and store accesses

that are not atomic, aka non-atomics (na). Thus, based on the kind

of operation and memory order, we categorize the accesses. For

instance, an access is acquire if its order is one of acq, acq-rel,

sc. Similarly an access is release if its order is one of rel, acq-rel,

or sc. The release and acquire accesses establish synchronization,

for instance, when an acquire read reads from a release write. Go-

ing forward, in Section 4 we discuss the formal model of C/C++

concurrency in detail.

2.2 PCT vs. Naive Random Testing.
Probabilistic Concurrency Testing (PCT) [8] is a randomized concur-

rency testing algorithm designed for SC programs, and it provides

strong theoretical guarantees on the probability of detecting con-

currency bugs. The key to its design is the notion of concurrency

bug depth, which is defined as the number of ordering constraints

between the concurrent events of a program. Given bug depth 𝑑 ,

PCT randomly generates a test execution that encodes a particular

ordering of events with 𝑑 scheduling constraints.

Consider Program P1 running two threads, where all thememory

accesses are of sc memory order. The program has an assertion

violation if the thread on the right reads 𝑋 = 𝑘 .

𝑋 = 1;

𝑋 = 2;

. . . ;

𝑋 = 𝑘

assert(𝑋 ! = 𝑘) (P1)

A naive random concurrency testing algorithm chooses the next

event to schedule from the set of all enabled events at each schedul-

ing choice. Such an algorithm detects the violation in the example

with a probability of only 1/2𝑘 where 𝑘 is the number of scheduling

choices. To detect it, it must choose the event in the first thread

among the 2 enabled events for all 𝑘 scheduling choices in the

execution.

PCT differs from naive random testing by sampling an execution

from the set of executions with 𝑑 ordering constraints. It guaran-

tees a lower bound on the probability of detecting a bug by a test

execution with a probability of at least 1/(𝑡𝑘𝑑−1) where 𝑡 is the
number of threads, 𝑘 is the number of program events, and 𝑑 is the

bug depth. While naive random testing can detect a bug with an

exponentially small probability in the number of program events,

PCT detects it with an exponentially small probability only in the

bug depth parameter 𝑑 .

The assertion violation in Program P1 requires a single ordering
constraint 𝑑 = 1, i.e., the assertion statement in the second thread

must be executed after the𝑋 = 𝑘 statement in the first thread. Given

𝑑 = 1, PCT samples a test execution out of two 𝑑 = 1 executions:

It either chooses a schedule that runs all events in the first thread

before the second thread or it chooses to schedule the second thread

before the first thread. Therefore, it hits the bug with a probability

of 1/2.

3 OVERVIEW
3.1 A Naive Application of PCT to Weak

Memory Concurrency
The probabilistic guarantee of the PCT algorithm [8] on the lower

bound of the probability of finding bugs does not apply to weak

memory programs. We demonstrate this on a naive application of

PCT for testing Program P1where PCT does not detect the violation

with a probability of 1/2.

Probabilistic Concurrency Testing for Weak Memory Programs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Consider the 𝑑 = 1 execution of PCT that schedules all events of

the first thread before the second thread. Under weak memory con-

currency, this execution does not necessarily hit the bug. Because

the read event can read from any write event in the first thread.

The example shows that the behavior of the weak memory pro-

grams does not depend on the thread interleavings but on the

selection of the write events that the read events get the values

from. However, the theoretical guarantee of the PCT algorithm

relies on the ordering constraints and the interleaving semantics

of sequential consistency. More specifically, it relies on the notion

of bug depth that is defined as the minimum number of scheduling

constraints that are sufficient to find the bug [8].

3.2 Revising Concurrency Bug Depth
The existing notion of bug depth does not capture weak memory

concurrency bugs. Consider Program SB. The program exhibits a

buggy behavior when both variables 𝑎 and 𝑏 load the value 0. The

bug does not depend on the scheduling order of the events; it does

not manifest under any SC executions of the program.

We revise the notion of concurrency bug depth to capture thread

communication rather than thread interleavings. We define the depth

of a concurrency bug as the minimum number of communication

relations between the concurrent events in an execution. A com-

munication relation between two concurrent events communicates

the effects of an event (e.g., writing a value) to another event (e.g.,

reading that value). For example, the depth of the concurrency bug

in Program SB is 𝑑 = 0 since it does not require any communication

between its thread events. The program events only access the

values of the variables that are available in their thread-local views.

Notice that the revised definition of the bug depth extends the

existing notion, which uses thread interleavings. For the specific

case of sequential consistency, a thread interleaving induces a com-

munication relation: the effects of all the write events in a thread

are communicated to the other threads at the thread interleavings.

For example, the depth of the concurrency bug in Program P1 is
𝑑 = 1 under both notions. Under SC, the bug exposes when the

execution meets a single ordering constraint, i.e., when the asser-

tion statement is executed after the 𝑋 = 𝑘 statement. Under weak

memory concurrency, the bug exposes in the presence of a single

communication relation between its events, i.e., the communication

of the effect of the write 𝑋 = 𝑘 to the read event in the assertion in

the second thread.

3.3 PCTWM: PCT for Weak Memory
Here, we informally introduce the key ideas in the PCTWM algo-

rithm, which we will elaborate in Section 5.

PCTWM extends PCT to generate an execution with 𝑑 commu-

nication relations instead of 𝑑 ordering constraints. Bounding the

number of communication relations by 𝑑 restricts the amount of

thread interaction in an execution. Without any restrictions, a read

operation in a thread can potentially read from a write event in

any thread. However, bounding an execution to have only 𝑑 com-

munication relations allows only 𝑑 events to read from an external

value. The other program events read from their thread-local views,

which only keep the updates made available to their threads.

For example, the 𝑑 = 0 execution of Program SB does not al-

low any load operations to read an external value. Therefore, both

load operations read the values available in the local views of their

respective threads. Similarly, the 𝑑 = 0 execution of Program P1
restricts the load operation to read the initial value of 𝑋 . Alterna-

tively, a 𝑑 = 1 execution of the program allows the load operation

to read a value written by the remote thread.

Besides the number of communication relations 𝑑 , PCTWM fur-

ther parametrizes the execution space using a history depth bound-

ing parameter ℎ. The history depth bound restricts the set of store

operations that a load operation can read from based on how old

a value is. It serves to prioritize the executions that load possibly

stale values but not older than ℎ number of store operations. Hence,

a load operation that is chosen to form a communication relation

can read from only ℎ possible values instead of 𝑘 values, further

reducing the sample set of executions.

For example, a PCTWM execution of Program P1 with 𝑑 = 1

and ℎ = 2 detects the concurrency bug with probability 1/2. First,
it chooses an event as the sink of the 𝑑 = 1 communication relation.

This example has only one possible communication sink, i.e., load

operation in the assertion statement. The PCTWM algorithm en-

sures that the selected communication sink event is executed as late

as possible, after the execution of other events. In this example, it

ensures that the assertion statement is executed after all the events

in the first thread, regardless of the initial thread priorities. While

the algorithm executes the selected sink event, it chooses a source

operation for the communication relation within a history depth

ℎ = 2. In this example, it can select to read from either 𝑋 = (𝑘 − 1)
or 𝑋 = 𝑘 , each with the probability of 1/2, the latter hitting the bug.

We provide the formal definitions for a communication relation,

source and sink events, thread-local view, the complete PCTWM

algorithm, its theoretical guarantee, and some example test execu-

tions generated by PCTWM in Section 5.

4 WEAK MEMORY CONCURRENCY MODEL
In this section, we discuss the C11 axiomatic model that we will

use to formally define the communication relation, which is a core

concept of PCTWM.

In C11 axiomatic semantics, a program is represented by a set of

executions. An execution consists of a set of events resulting from

shared memory accesses or fences and the relations between these

events.

Event. An event is represented by a tuple ⟨id, tid, lab⟩ where id,
tid, and lab denote a unique identifier, thread identifier, and label

of the event, respectively. A label lab = ⟨op, loc, rVal,wVal⟩ is a
tuple where op denotes the corresponding memory access or fence

operation.

For memory accesses, loc, rVal, and wVal denote the correspond-
ing memory location, the read, and the written value. In case of

fences, loc = rVal = wVal = ⊥. A successful read-modify-write

operation results in an RMW event (U) and, on failure, generates

a read event (R). The set of read, write, RMW, and fence events

are R, W, U, and F, respectively. We write R = R ∪ U to denote

read or RMW, andW = W ∪ U to denote the read or RMW events.

The memory locations are initialized at the start of the execution,

represented by a set of write events.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

Relation. Various binary relations connect the events in an exe-

cution. We discuss the notations before explaining them.

Notations. Given a binary relation 𝐵, we write 𝐵?, 𝐵+, 𝐵∗, 𝐵−1

to denote its reflexive, transitive, reflexive-transitive closures, and

inverse relations, respectively. Relation imm(𝐵) denotes the imme-

diate relation: imm(𝐵) (𝑥,𝑦) ≜ 𝐵(𝑥,𝑦) ∧�𝑧 𝐵(𝑥, 𝑧) ∧𝐵(𝑧,𝑦). Given
two relations 𝐵1 and 𝐵2, we denote their composition by 𝐵1;𝐵2. [𝐴]
denotes the identity relation on a set 𝐴, i.e. [𝐴] (𝑥,𝑦) ≜ 𝑥 = 𝑦 ∧ 𝑥 ∈
𝐴. Given a set 𝑆 and a relation 𝐵, maximal(𝑆, 𝐵) denotes the 𝐵-

maximal events i.e. maximal(𝑆, 𝐵) ≜ {𝑒 | 𝑒 ∈ 𝑆 ∧ 𝑆 ∩ [{𝑒}];𝐵 = ∅}.
An execution has the following relations between events: The

relation program-order (po) is a strict partial order that captures
the syntactic order between the events. It is a strict total order on

same-thread events. Relation reads-from (rf) relates a write event
with the same-location read events that read from it. A read event

reads from exactly one write event. Relation modification-order

(mo) is a strict total order over same-location write events. Relation

SC is a total order on the SC accesses. From these relations, we

derive the following relations.

• From-read (fr ≜ (rf−1;mo) \ [E]) relates a same-location read

and write events; if a read 𝑟 reads-from a write𝑤 and write𝑤 ′

is mo-after𝑤 , then fr(𝑟,𝑤 ′) holds.
• We adopt the synchronizes-with (sw) relation from RC20 [34].

Relation happens-before (hb) is the transitive closure of po and
sw relations.

sw ≜ [E⊒rel]; ([F]; po)?; rf+; (po; [F])?; [E⊒acq]]
hb ≜ (po ∪ sw)+

Execution. An execution X = ⟨E, po, rf,mo, SC⟩ is a tuple where
X.E is the set of events and X.po, X.rf, X.mo, X.SC are set of po, rf,
mo, SC relations between the events in X.E. We represent execution

by an execution graph where the events are represented by nodes,

and the relations are represented by corresponding edges.

Consistency Axioms. C11 defines a set of axioms to check if an

execution is consistent.

• (coherence) The events accessing the same memory location

are coherent. We categorize them in write and read coherence

constraints [26].

– mo; rf?; hb? is irreflexive. (write-coherence)

– fr; rf?; hb is irreflexive. (read-coherence)

These constraints effectively enforce sc-per-location, a total order

on same-location memory accesses.

• (Atomicity) The RMW accesses execute atomically. As a result,

(fr;mo) = ∅ holds.
• (irrMOSC) The mo and SC orders agree on same-location ac-

cesses, that is, (mo; SC) is irreflexive.
• (SC) The SC accesses are globally ordered. There is a number of

SC order definitions [4, 5, 27, 29, 32, 48].

We follow the one from C11Tester [32], that is, (hb ∪ rf ∪ SC) is
acyclic.

Note that the (SC) axiom enforces that hb is irreflexive (an action

cannot happens-before itself) [5, 48]. Moreover, as po ⊆ hb, the
(SC) constraint also enforces that (po ∪ rf) is acyclic and forbids

out-of-thin-air reads.

5 PCT FORWEAK MEMORY PROGRAMS
The PCTWM algorithm extends PCT to weak memory programs

in a memory model agnostic way so that its theoretical guarantee

applies to any memory model. The algorithm relies on the two key

concepts of (i) communication relation between concurrent program

events and (ii) local thread view that maintains the set of updates

made available to a thread. This paper defines and constructs these

relations for the C11 memory model.

5.1 Formal Definitions
Definition 1 (View). A view is a map from locations to a set of

maximal-mo events. Given an execution ⟨E, po, rf,mo, SC⟩, view(𝑥) =
maximalmo (E𝑥) holds where E𝑥 are the set of write or RMW events.

• Combining views on a location𝑥 . Wewrite

⊔
mo(view1(𝑥),view2 (𝑥))

to compute the maximal view from view1 (𝑥) and view2 (𝑥) for a
given location 𝑥 , i.e. maximal(view1 (𝑥) ∪ view2 (𝑥),mo).
• Combining views on all memory locations. Similarly, we write⊔

mo (view1, view2) to compute

⊔
mo (view1 (𝑥), view2 (𝑥)) for all

memory locations 𝑥 .

Each thread maintains its own view in an execution. We write 𝑡 .view
to denote the view of thread 𝑡 . Essentially, a thread view maintains the

latest write or RMW events observed by the thread for each memory

location.

Definition 2 (Communication Relation). Following the (SC)

constraint in C11Tester model (see section 2), we consider inter-thread

rf, hb, SC as com relations, that is, com ≜ (rf ∪ hb ∪ SC) \ po.

Definition 3 (Communication event). A communication rela-

tion is formed between two events: a source event and a sink event

of the communication relation. A source event captures the effect,

which can potentially be communicated to other threads. So, it is

an SC, or a write or a fence event. A sink event communicates the

updates of other threads to its local thread. We call the sink events as

communication events. So, it is an SC, or read or acquire event.

Intuitively, the effect of the events in dom(com) (e.g., writing a

value to a variable, releasing a fence) can potentially be commu-

nicated to an event in codom(com) (e.g., reading the value of a

variable, acquiring a fence) running on another thread. We call the

events in dom(com) as communication sources and the events in

codom(com) as communication sinks.

Definition 4 (Bug depth). The depth of a concurrency bug is

the minimum number of communication relations between the con-

current events in an execution that is sufficient to produce the bug.

Definition 5 (History depth). The history depth ℎ bounds the

behavior of a read event in an execution so that it reads from an event

that does not have more than ℎ imm(mo)-related successors.

5.2 The PCTWM Algorithm
The PCTWM algorithm randomly generates a test execution with

ℎ-bounded 𝑑 communication relations between the program events.

The generated test execution allows 𝑑 selected events to observe ℎ-

bounded updates of external threads and restricts the other events

to access only the values in their thread views.

Probabilistic Concurrency Testing for Weak Memory Programs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Input: 𝑘𝑐𝑜𝑚 : the number of comm. events in the program

Input: 𝑑 : bug depth
Input: ℎ: history depth

Data: threads // the list of threads in ascending order of

priorities, the first 𝑑 positions are initially empty

Data: [𝑑1, . . . , 𝑑𝑑] // list of 𝑑 distinct integers, initialized

randomly between [1, 𝑘𝑐𝑜𝑚]
Data: reordered // the set of event ids reordered with a

thread priority change, initially empty

Data: i // the number of comm. events observed, initially 0

Data: 𝑠 // the current execution state, initially 𝑠0

1 Procedure PCTWM(𝑘𝑐𝑜𝑚, 𝑑, ℎ)
2 while enabled(𝑠) not empty do
3 for 𝑡ℎ ∈ enabled(𝑠) and 𝑡ℎ ∉ 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 do
4 insert 𝑡ℎ into a random index after 𝑑 in threads

5 t ← getHighestPrEnabled(threads)
6 e← next(𝑠, t)
7 if isCommunicationEvent(e) then
8 i← i + 1
9 if i ∈ {𝑑1, . . . , 𝑑𝑑 } then
10 // update the priority of t

11 𝑘 ← indexOf (i, [𝑑1, . . . , 𝑑𝑑])
12 threads[𝑑 − 𝑘] ← t

13 reordered ← reordered ∪ {e}
14 continue
15 executeAndUpdateView(𝑠, e)

isCommunicationEvent(e) return e ∈ (SC ∪ R ∪ F⊒acq)

Algorithm 1: The PCTWM algorithm

Generating a test execution for a weakmemory program requires

(i) selecting the next event to execute and (ii) selecting the behavior

of this event (e.g., selecting which event to read from). The PCTWM

algorithm binds these two choices and restricts an execution to

switch threads only at 𝑑 points that correspond to the external

reads or synchronization of the inter-thread events.

We present the PCTWM algorithm (see Algorithm 1) following

the structure of the C11Tester [32] by (i) incorporating 𝑑-bounded

test generation in PCT [8], and (ii) maintaining the thread-local

views for computing the behavior of communication events.

The PCTWM algorithm takes the bug depth (𝑑), the history

bound (ℎ), and the number of communication events in the program

(𝑘𝑐𝑜𝑚) as test parameters. Then, it samples ℎ-bounded 𝑑 communi-

cation relations in the execution.

PCTWM maintains a list of threads that keeps the thread ids in

the order of their priorities. It chooses the next event to be sched-

uled using the priority-based approach in PCT. It runs threads in the

order of their priorities and switches between them at randomly se-

lected 𝑑 points in the execution. The switching points are specified

by the randomly selected tuple of 𝑑 events, [𝑑1, . . . , 𝑑𝑑], randomly

initialized between [1, 𝑘𝑐𝑜𝑚]. The execution of the selected 𝑑 events

is delayed by updating the thread priorities accordingly, and they

are used to form communication relations as they can read from

externally written values of the accessed variables. We also keep

1 Procedure executeAndUpdateView(t, e)
2 𝑏 ←⊥
3 𝑥 ← e.loc
4 if e ∈ W then
5 t .view(𝑥) ← e

6 if e ∈ SC then
7 𝑒 ′ ← getSC(t, e)
8 t .view← ⊔

𝑠.mo (𝑡 .view, 𝑒 ′.bag)
9 if e ∈ R then
10 if e ∈ reordered then
11 // read from any of the store operations

12 𝑏 ← readGlobal(t, ℎ)
13 if isSync(e, 𝑏) then
14 t .view← ⊔

𝑠.mo (𝑡 .view, 𝑏.bag)
15 else
16 t .view(𝑥) ← ⊔

𝑠.mo (𝑡 .view(𝑥), 𝑏.bag(𝑥))
17 else
18 // read from the local thread view

19 𝑏 ← readLocal(t)
20 if e ∈ F⊒acq then
21 esw← getSWSet(t, e)
22 for 𝑒 ′ ∈ esw do
23 t .view← ⊔

𝑠.mo (𝑡 .view, 𝑒 ′.bag)
24 if e ∈ Frel then
25 // no update to the current thread’s view

26 e.bag← t .view
27 𝑠 ← execute(𝑠, t, 𝑏)
Algorithm 2: The executeAndUpdateView procedure that ex-

ecutes an event 𝑒 and updates its thread’s view.

reordered, which keeps the set of events whose execution is de-

layed. The algorithm variables 𝑖 and 𝑠 keep the current number of

communication events and the execution state, respectively.

Similar to C11Tester, we use enabled(𝑠) to denote the set of all

threads enabled in state 𝑠 , and next(𝑠, 𝑡) to refer to the next enabled
event in thread 𝑡 at state 𝑠 . We use getHighestPrEnabled(threads)
to get the thread id with the highest priority among threads, and

indexOf (𝑖, 𝑙𝑖𝑠𝑡) to get the index of the element 𝑖 in 𝑙𝑖𝑠𝑡 .

Procedure PCTWM. The algorithm selects the enabled thread 𝑡

with the highest thread priority (line 4) and the next enabled event

𝑒 of 𝑡 (line 5). If the event is a communication event, it is potentially

involved in one of the 𝑑 communication relations. In that case, we

increment the number of communication events encountered in

the execution (line 7) and check if that event is among the ran-

domly selected 𝑑 events (line 8). If this is the case, we delay the

execution of its thread by updating its priority (line 11) and adding

the event to the set reordered (line 12). On lines 10-11, we update

the priority of the current thread based on event 𝑒’s index in the

tuple [𝑑1, . . . , 𝑑𝑑]. Suppose 𝑒 is identified by 𝑖 = 𝑑𝑒 , in [𝑑1, . . . , 𝑑𝑑].
We delay the execution of 𝑒 so that it executes after all program

events except for the events in [𝑑𝑒+1, . . . , 𝑑𝑑]. Hence, the algorithm
runs the communication events identified by [𝑑1, . . . , 𝑑𝑑] as late as
possible, preserving their relative order in the tuple. Enforcing a

particular order between these 𝑑 communication events provides

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

the visibility of a communication source (dom(com)) event to its
sink (codom(com)) event.

The PCTWM algorithm is agnostic to any memory model by

using the two procedures:

• isCommunicationEvent, which is used to check if an event is
a communication event which is potentially delayed to form

a communication relation (line 6), and

• executeAndUpdateView, which updates the local views of

the thread based on the executed event 𝑒 (line 14).

In this work, we define these procedures based on the C11 mem-

ory model (described in Section 2), which is also the considered

model by C11Tester.

Procedure isCommunicationEvent. Given an event e, the proce-

dure checks if it is a communication event. Following the definition

of communication events in Section 5.1, a communication event

is: (1) an SC event or (2) a read event, which may read from other

threads, or (3) a synchronization event, which can be a sink of an

inter-thread synchronization (sw) relation.

Procedure executeAndUpdateView. Given the scheduled event

𝑒 and its thread 𝑡 , this procedure executes 𝑒 and updates the thread-

local view of 𝑡 accordingly. For each event, we maintain a bag
that captures the thread-local view at the point of its execution.

Whenever an event forms a communication relation where it is

the source event, we communicate its bag to the sink event of the

communication relation. The sink event uses the bag to update its

own thread-local view.

The update depends on the communication relation formed be-

tween the events. On line 2 in Algorithm 2, we keep a reference 𝑏

for a read or RMW event 𝑒 to store the behavior of the write event

𝑒 reads-from. We update the view of thread 𝑡 and the bag of 𝑒 based
on the type of 𝑒 .

On lines 4-5, if 𝑒 is a write or RMW event, then the view of 𝑡 is

updated only with event 𝑒 at the location of 𝑒 i.e. 𝑥 . On lines 6-8, if 𝑒

is an SC event, then the algorithm updates the view of thread 𝑡 with

the views of that event’s SC-predecessors (returned by getSC). Lines
9-19 handle the read events. If 𝑒 in the reordered set, i.e., it is selected

as one of the communication sinks, then 𝑒 reads from a visible

write or RMW event 𝑏 within history depth ℎ using readGlobal
(line 12). Otherwise, it reads from the value from its thread’s local

view using readLocal (line 19). The readGlobal procedure forms

a communication relation between 𝑒 and the operation it reads

from i.e., 𝑏. Depending on the communication relation 𝑒 forms, it

can either form a sw relation (checked by isSync) and, therefore,
updates its thread view by all the variables of the bag it receives

from the communication source (line 14), or it only updates its

thread view by only the value of e.loc it reads (line 16). Lines 20-23
handle the synchronization formed if 𝑒 is an F⊒acq event. It updates

the thread’s view on all locations with the bags of all events with

which it synchronizes-with. On line 25, if the operation is an Frel,
then nothing is communicated to the current thread and the thread

view is not updated. Finally, on line 26, The algorithm assigns the

current thread’s view to the bag of the currently executing event 𝑒

and executes the event.

𝑖 : [𝑋 = 𝑌 = 0]
{(𝑋, 𝑖𝑥), (𝑌, 𝑖𝑦) }

𝑒1 : W(𝑋, 1)
{(𝑋, 𝑒1), (𝑌, 𝑖𝑦) }

𝑒2 : Frel
{(𝑋, 𝑒1), (𝑌, 𝑖𝑦) }

𝑒3 : W(𝑌, 1)
{(𝑋, 𝑒1), (𝑌, 𝑒3) }

𝑒4 : R(𝑌, 1)
{(𝑋, 𝑖𝑥), (𝑌, 𝑒3) }

{(𝑋, 𝑒1), (𝑌, 𝑒3) }

𝑒5 : Facq
{(𝑋, 𝑒1), (𝑌, 𝑒3) }

𝑒6 : R(𝑋, 1)
. . .

{(𝑋, 𝑒1), (𝑌, 𝑖𝑦) }
sw

rf

Figure 1:MP1 execution 𝑎 = 1, 𝑏 = 1 with views and bags.

Example. Consider the Program MP1 running two threads 𝑇1

and 𝑇 2. In this program, 𝑎 = 1, 𝑏 = 0 results in a bug.

𝑋 = 𝑌 = 0

𝑋rlx = 1;

Frel;
𝑌rlx = 1;

𝑎 = 𝑌rlx;

Facq;
𝑏 = 𝑋rlx;

(MP1)

The execution in Figure 1 demonstrates how the algorithm en-

sures that if 𝑎 = 1, then also𝑏 = 1. At the beginning of the execution,

the initial views of the threads 𝑇1, 𝑇2 are {(𝑋, 𝑖𝑥), (𝑌, 𝑖𝑦)}, where
𝑖𝑥 and 𝑖𝑦 are initialization writes of 𝑋 and 𝑌 respectively. The ex-

ecution of 𝑒1 updates the thread view to {(𝑋, 𝑒1), (𝑌, 𝑖𝑦)}, which
remains the same after 𝑒2 following lines 4-5 and 25 in Algorithm 2,

respectively. Execution of 𝑒3 updates the thread view on 𝑌 (lines

4-5). The read event 𝑒4 reads from 𝑒3 (following line 12) and obtains

𝑇1’s view in its bag (we illustrate the communicated bags using

blue-colored views). The relaxed read operation updates the thread

view only for 𝑌 , resulting in {(𝑋, 𝑖𝑥), (𝑌, 𝑒3)} (line 16). Fence event
𝑒5 synchronizes with 𝑒2 and obtain {(𝑋, 𝑒1), (𝑌, 𝑖𝑦)} in its bag to

update 𝑇2’s view to {(𝑋, 𝑒1), (𝑌, 𝑒3)} following lines 20-23, which
overwrites the initialization on𝑋 . The next event 𝑒6 reads the value

1, regardless of whether it reads using readGlobal or readLocal.
Because its current thread view keeps 𝑒1 for the variable 𝑋 . In that

example, the outcome 𝑎 = 1, 𝑏 = 0 triggers a bug.

5.3 Example Executions Generated by PCTWM
We now discuss some example executions generated by PCTWM

for testing ProgramMP2, which is a message-passing program in

which all the shared memory accesses are relaxed accesses. The

program consists of the parallel execution of three threads, which

we refer to as 𝑇1, 𝑇2, and 𝑇3, from left to right. The execution of

a program that reads 𝑌 == 1 and 𝑋 == 0 in 𝑇3 hits an assertion

violation. While proper synchronization of the operations could

prevent the assertion violation, we consider this buggy version

of the program with all relaxed accesses to illustrate the test case

generation of PCTWM and how it detects the bug. The bug has

concurrency bug depth 𝑑 = 2 since it exposes in an execution with

two communication relations between its threads.

We present three test executions generated by PCTWM with

𝑑 = 0, 𝑑 = 1, and 𝑑 = 2 communication relations, respectively.

Probabilistic Concurrency Testing for Weak Memory Programs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

𝑖 : [𝑋 = 𝑌 = 0]
{(𝑋, 𝑖𝑥), (𝑌, 𝑖𝑦) }

𝑒1 : W(𝑋, 1)
{(𝑋, 𝑒1), (𝑌, 𝑖𝑦) }

𝑒2 : R(𝑋, 0)
{(𝑋, 𝑖𝑥), (𝑌, 𝑖𝑦) }

𝑒3 : W(𝑌, 1)
{(𝑋, 𝑒1), (𝑌, 𝑒3) }

𝑒4 : R(𝑌, 0)
{(𝑋, 𝑖𝑥), (𝑌, 𝑖𝑦) }

Figure 2: The 𝑑 = 0 execution of Program MP2. There is no
communication between the threads.

𝑖 : [𝑋 = 𝑌 = 0]
{(𝑋, 𝑖𝑥), (𝑌, 𝑖𝑦) }

𝑒1 : W(𝑋, 1)
{(𝑋, 𝑒1), (𝑌, 𝑖𝑦) }

𝑒2 : R(𝑋, 1)
{(𝑋, 𝑒1), (𝑌, 𝑖𝑦) }

𝑒3 : W(𝑌, 1)
{(𝑋, 𝑒1), (𝑌, 𝑒3) }

𝑒4 : R(𝑌, 0)
{(𝑋, 𝑖𝑥), (𝑌, 𝑖𝑦) }

(1) (3)

(4)

(2)

(3)

rf

Figure 3: A 𝑑 = 1, ℎ = 1 execution of MP2. The illustrated exe-
cution selects [𝑒2] as the sink of the communication relation
and assigns initial priorities as [𝑇 1,𝑇 2,𝑇 3].

𝑋 = 𝑌 = 0

𝑋 = 1;

if (𝑋 == 1)
𝑌 = 1;

if (𝑌 == 1)
if (𝑋 == 0)

assert(false);

(MP2)

Generating the execution with 𝑑 = 0. The 𝑑 = 0 execution

of ProgramMP2 (see Figure 2) does not have any communication

relations between the threads. Therefore, all the events access the

values in their thread local views. In the figure, we provide the

thread views (below the events) obtained after executing an event.

Following Algorithm 1, PCTWM generates this execution by

assigning random priorities to the threads and running them serially

in the order of their priorities. Given 𝑑 = 0, it does not update

priorities at any point in execution and does not introduce any

communication relations into the execution.

Generating an execution with 𝑑 = 1. The PCTWM algorithm

generates a 𝑑 = 1 execution of the program by randomly sampling a

communication relation in the execution. Figure 3 provides a 𝑑 = 1

and ℎ = 1 execution of the program with randomly assigned initial

thread priorities [𝑇 1,𝑇 2,𝑇 3], respectively, in the decreasing order.

𝑖 : [𝑋 = 𝑌 = 0]
{(𝑋, 𝑖𝑥), (𝑌, 𝑖𝑦) }

𝑒1 : W(𝑋, 1)
{(𝑋, 𝑒1), (𝑌, 𝑖𝑦) }

𝑒2 : R(𝑋, 1)
{(𝑋, 𝑒1), (𝑌, 𝑖𝑦) }

𝑒3 : W(𝑌, 1)
{(𝑋, 𝑒1), (𝑌, 𝑒3) }

𝑒4 : R(𝑌, 1)
{(𝑋, 𝑖𝑥), (𝑌, 𝑒3) }

𝑒5 : R(𝑋, 0)
{(𝑋, 𝑖𝑥), (𝑌, 𝑒3) }

(1) (2)

(3)

(4)

(5)

(2)

rf
(4)

rf

Figure 4: A 𝑑 = 2, ℎ = 1 execution of MP2. The illustrated exe-
cution selects [𝑒2, 𝑒4] as the sinks of the two communication
relations and assigns initial priorities as [𝑇 1,𝑇 2,𝑇 3].

We mark the execution order of the events with the numbers on

the arrows.

Given 𝑑 = 1, the algorithm switches the execution of threads

at a randomly selected communication event, allowing that event

to read from a value written in another thread (e.g., a read event

can read from an external write event) or synchronize with an

external event (e.g., a read-acquire event can synchronize with a

write-release event, or an SC event can synchronize with another

SC event). In the example execution, the algorithm selects [𝑒2] as
the sink of the communication relation.

The execution starts with running the highest priority thread,𝑇 1.

It runs 𝑒1 and moves to the next thread,𝑇 2. Since the next event, 𝑒2,

is selected as the sink event of the communication relation, PCTWM

does not immediately run this event. It reduces the priority of 𝑇2

to a value smaller than the initial thread priorities. This causes

the communication sink event 𝑒2 to run after all other events, e.g.,

possibly write events it can externally read from. The algorithm

continues with the currently highest priority thread, 𝑇 3. The event

𝑒4 reads 𝑌 = 0, so the execution does not go into the if branch in

the program. After the completion of𝑇 3, the algorithm resumes𝑇 2,

running the event 𝑒2. Given ℎ = 1, 𝑒2 reads from the last written

value of 𝑋 from 𝑒1, forming a communication relation from 𝑒1 to

𝑒2 between the threads 𝑇1 and 𝑇2. The execution continues with

running 𝑒3 and completes.

In an alternative execution with ℎ = 2, PCTWM would select

one of the writes 𝑋 = 0 or 𝑋 = 1 uniformly at random for 𝑒2 to

read from, reading from either the initial value or 𝑒1, respectively.

Generating an execution with 𝑑 = 2. PCTWM generates a

𝑑 = 2 execution of the program by randomly sampling two com-

munication relations in the execution. Figure 4 provides a 𝑑 = 2

and ℎ = 1 execution of the program with randomly assigned initial

thread priorities [𝑇 1,𝑇 2,𝑇 3], respectively, in the decreasing order.

Different from the previous example, a 𝑑 = 2 execution switches

threads at two randomly selected events, allowing these two events

to read from or synchronize with an external event. In this example,

PCTWM selects the tuple [𝑒2, 𝑒4] to execute in this order after the

execution of all other events and form communication relations

accessing thread external writes.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

The execution starts similarly to the previous example. PCTWM

runs the highest priority thread𝑇 1 and continues with𝑇 2. Since the

next event, 𝑒2, is selected as the sink event of the communication

relation, PCTWM does not immediately run this event. It reduces

the priority of 𝑇 2 and moves to 𝑇 3. Since the next event, 𝑒4, is also

selected as the sink of a communication relation, PCTWM does

not immediately execute 𝑒4, but it reduces the priority of 𝑇 3. Note

that PCTWM updates the priorities of 𝑇2 and 𝑇3 so that 𝑒2 and

𝑒4 run in the order they appear in [𝑒2, 𝑒4]. Therefore, it runs the
selected events [𝑒2, 𝑒4] in that order regardless of their random

initial thread priorities. The execution continues with the current

highest priority thread, 𝑇2, allowing 𝑒2 to read from an external

write. Given ℎ = 1, it reads from 𝑒1, forming a communication

relation. After the completion of𝑇 2, the algorithm resumes𝑇 3. The

event 𝑒4 forms the second communication relation by reading from

𝑒3. Since the relaxed read operation updates only the thread-local

view of the thread for𝑌 but not for𝑋 , 𝑒5 reads𝑋 = 0. This execution

with 𝑑 = 2 communication relations produces a buggy execution

where 𝑇 3 reads 𝑌 = 1 and 𝑋 = 0.

The example test executions of ProgramMP2 highlight several
insights about the PCTWM algorithm. First, more complex execu-

tions with deeper concurrency bugs manifest in the existence of

a higher number of communication relations between concurrent

events. Second, the execution order of the selected 𝑑 events affects

the set of visible values to a read event to read from. For example,

if the algorithm generates a 𝑑 = 2 execution by selecting [𝑒4, 𝑒2]
instead of [𝑒2, 𝑒4], then 𝑒4 reads 𝑌 = 0, resulting in an execution

that does not produce the bug. Finally, communication relations

update thread local views based on the semantics of the events in

the relation. For example, the communication relation (𝑒3, 𝑒4) in
Figure 4 updates only the variable 𝑌 in the thread local view of 𝑇 3.

However, if the communication relation (𝑒3, 𝑒4) formed a synchro-

nization (e.g., 𝑒3 was a release-write and 𝑒4 was an acquire-read),

the updates on both variables 𝑋 and 𝑌 would be propagated to the

thread local view of 𝑇 3.

5.4 The Probability of Detecting Bugs
Given a program with 𝑘𝑐𝑜𝑚 communication events, PCTWM sam-

ples an execution with 𝑑 communication relations with a history

depth of ℎ with the probability of at least 1/𝑂 ((ℎ𝑘𝑐𝑜𝑚)𝑑). The
algorithm chooses 𝑑 events out of 𝑘𝑐𝑜𝑚 events as the sinks of 𝑑

communication relations from

(𝑘𝑐𝑜𝑚
𝑑

)
possible ways. It sorts these

𝑑 events in a particular order yielding

(𝑘𝑐𝑜𝑚
𝑑

)
𝑑! ≤ 𝑘𝑐𝑜𝑚

𝑑
many

ways. For each of the 𝑑 communication sinks, the algorithm selects

a source event out of ℎ possible events in 𝑂 (ℎ𝑑) possible ways.

Therefore, the size of the set of executions sampled by the PCTWM

algorithm is bounded by 𝑂 ((ℎ𝑘𝑐𝑜𝑚)𝑑). Trivially, the probability

of choosing an execution out of this set is at least 1/𝑂 ((ℎ𝑘𝑐𝑜𝑚)𝑑),
which is exponentially low only in the bug depth parameter 𝑑 .

6 EXPERIMENTAL EVALUATION
In this section, we discuss our evaluation of PCTWM on some well-

known data structures and real-world application benchmarks and

compare the results with the state-of-the-art weak memory testing

tool, C11Tester.

Table 1: Data structure benchmarks.

Benchmark LOC 𝑘 𝑘𝑐𝑜𝑚 𝑑

dekker 50 20 14 0

msqueue 232 49 31 0

barrier 38 15 10 1

cldeque 122 86 56 1

mcslock 75 26 16 1

mpmcqueue 108 19 17 2

linuxrwlocks 90 20 19 2

rwlock 98 84 74 2

seqlock 50 20 18 3

Random Testing in C11tester [32]. C11Tester randomly explores

the set of program behaviors by generating test executions in two

steps: (1) randomly selecting the next thread to execute among the

set of all enabled events and (2) randomly selecting a write from a

set of visible writes for a read or update to read-from.

Implementation. We developed both PCT and PCTWM algo-

rithms in the C11Tester framework, which provides interfaces for

implementing the selection of next event to execute, and the se-

lection of program behavior for a read event to read from. Our

implementation of PCT differs from the original algorithm [8], as

our implementation does not produce only sequentially consistent

executions, but it allows for some weak memory behavior. More

specifically, we implement a variant of PCT where the read opera-

tions do not necessarily read the last written value on a variable,

but they read any of the observable values under the given memory

model, selected uniformly at random. Therefore, our implementa-

tion of PCT can trigger the concurrency bugs that occur only under

weak memory behavior.

Benchmarks. We use nine data structure benchmarks (with some

seeded weak memory concurrency bugs by C11Tester), and three

real-world applications Iris [50], a low-latency C++ logging library;

Mabain [13], a key-value store library; Silo [46, 47], a multi-core

in-memory storage engine used in the evaluation of C11Tester.

Table 1 lists the benchmarks together with their lines of code

(LOC), the estimated number of program events (𝑘), the estimated

number of communication events (𝑘𝑐𝑜𝑚), and the depth of their

concurrency bugs (𝑑). Similar to PCT, which takes an estimated

number of program events (𝑘) and bug depth 𝑑 as test parame-

ters, PCTWM takes an estimated number of communication events

(𝑘𝑐𝑜𝑚) together with the bug depth 𝑑 and history depth ℎ as test

parameters.

Research Questions. We evaluate the effectiveness of PCTWM by

addressing the following research questions:

RQ1. Can the PCTWM algorithm find concurrency bugs and

how do the bounding parameters bug depth (𝑑) and history depth

(ℎ) affect the bug detection rate?

RQ2. How does the bug detection rate of the PCTWM algorithm

compare to the bug detection rate of C11Tester?

RQ3. How does the effectiveness of PCTWM compare to PCT

for testing programs having more weak memory accesses?

Probabilistic Concurrency Testing for Weak Memory Programs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 5: Highest bug hitting rates observed for all nine benchmarks

RQ4.What is the performance overhead of PCTWM in terms of

execution time in comparison to C11Tester?

6.1 The Effectiveness of PCTWM
Varying the bug depth bound. To answer RQ1, we first test

each benchmark with a 𝑑 value as an algorithm input parameter

that corresponds to the depth of their concurrency bugs. Next, we

vary the bounding test parameters 𝑑 and ℎ to observe their effect

on the effectiveness of hitting the bugs.

Table 2 lists the percentages of the test executions that detect

the bug out of 1000 test runs. PCTWM successfully detects the bugs

with high probabilities by bounding the sample set of executions

using varying values [𝑑, 𝑑 + 2] for the bug depth parameter.

For the benchmarks having a concurrency bug of depth 𝑑 = 0,

PCTWM generates a single execution that does not introduce any

communication relations and detects the bug in all tests. We also

see that increasing values for the bug depth parameter 𝑑 decreases

the probability of hitting the bug for these benchmarks. For the

other benchmarks, PCTWM detects the bugs with comparable rates

for the depth parameter values [𝑑,𝑑 + 2]. We observe that the rate

of detecting bugs decrease for larger values of 𝑑 [16].

Varying the history depth bound. Table 3 lists the percentages
of the test executions that detect the bugs for varying values of the

history bound ℎ = [1, 4]. We observe only small changes in the bug

detection rates for increasing ℎ. This can be because there are not

many visible write events within ℎ bound for a read event to read

from in the benchmark programs. The history bounding parameter

is more useful for programs with a high number of write events

whose values are visible to read events.

6.2 PCTWM vs C11Tester
We compare the performance of random testing using PCTWM, our

implementation of PCT, and C11Tester in Figure 5. Note that our

implementation of PCT does not restrict the test executions to be

Table 2: Bughitting rates using PCTWMfor the data structure
benchmarks for varying values of bug depth 𝑑 .

Benchmark d Rate(d) Rate(d+1) Rate(d+2)

dekker 0 100 (h:1) 77.1 (h:1) 75.7 (h:1)

msqueue 0 100 (h:1) 100 (h:1) 100 (h:1)

barrier 1 77.8 (h:2) 78.7 (h:3) 75.9 (h:2)

cldeque 1 55.7 (h:3) 100 (h:1) 100 (h:1)

mcslock 1 100 (h:1) 100 (h:1) 100 (h:1)

mpmcqueue 2 100 (h:1) 100 (h:1) 100 (h:1)

linuxrwlocks 2 100 (h:1) 100 (h:1) 100 (h:1)

rwlock 2 76.9 (h:4) 78.8 (h:3) 77 (h:3)

seqlock 3 33.3 (h:3) 41.2 (h:1) 39.5 (h:2)

Table 3: Bughitting rates using PCTWMfor the data structure
benchmarks for varying values of history depth ℎ.

Benchmark 𝑘𝑐𝑜𝑚 d

Bug Hitting Rate(%)

h:1 h:2 h:3 h:4

dekker 14 1 77.1 69.7 67.4 65.3

msqueue 31 0 100 100 100 100

barrier 10 2 74.8 75.1 76.7 78.7

cldeque 56 1 100 100 100 100

mcslock 16 1 100 100 100 100

mpmcqueue 17 2 100 100 100 100

linuxrwlocks 19 2 100 100 100 100

rwlock 74 3 74.2 76 78.8 73.5

seqlock 18 4 41.2 39.8 37.1 36.7

sequentially consistent but allows them to exhibit some weak mem-

ory behavior. Therefore, it can detect weak memory concurrency

bugs in the benchmark programs.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

Num of Inserted Writes

B
ug

 H
itt

in
g

R
at

e
in

 5
00

 ro
un

ds

0

25

50

75

100

2 4 6 8 10

C11Tester PCT PCTWM

mpmcqueue - inserting relaxed writes

Num of Inserted Writes

B
ug

 H
itt

in
g

R
at

e
in

 5
00

 ro
un

ds

0

25

50

75

100

0 2 4 6 8 10

C11Tester PCT PCTWM

dekker - inserting relaxed writes

Num of Inserted Writes

H
itt

in
g

R
at

e(
50

0
ro

un
ds

)

0

25

50

75

100

5 10 15 20

C11Tester PCT PCTWM

rwlock - inserting relaxed writes

Num of Inserted Writes

B
ug

 H
itt

in
g

R
at

e
in

 5
00

 ro
un

ds
(%

)

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9

C11Tester PCT PCTWM

cldeque - inserting relaxed writes

Figure 6: Change in the bug hitting rates with an increasing number of relaxed write operations in the benchmarks.

PCT vs. C11Tester. PCT achieves higher bug-hitting rates than

C11Tester in general and performs significantly better in five of

the benchmarks. This can be explained by the fact that the PCT

algorithm samples a test execution from a 𝑑-bounded set of test

executions while C11Tester samples from the set of all possible

program executions.

PCTWM vs. PCT. The PCTWM algorithm performs comparably

or better than PCT in most of the benchmarks. For the benchmarks

with a concurrency bug of depth 𝑑 = 0, PCTWM is observably bet-

ter than PCT. Because the bug in these benchmarks expose when

there is no communication between its threads and the PCTWM

executions with 𝑑 = 0 always hit them. The PCT and PCTWM algo-

rithms improve the average bug-hitting rate in the nine benchmarks

by 16% and 29%, respectively.

In general, the bounded testing algorithms PCT and PCTWM

outperformC11Tester except for the seqlock benchmarkwhere they

hit the bug with a slightly lower rate. It is because this benchmark

implementswait loops in which a thread waits for a value written by

another thread. PCT and PCTWM restrict the thread interleavings

and communication, respectively, preventing the thread from going

out of the wait loop. Similar to PCT, which uses some heuristics

to avoid such starvation issues [8], PCTWM applies a heuristic to

switch to a random thread when it observes a livelock. The more

thread switches and external reads-from PCTWM employs to avoid

a livelock, the more it approaches to naive random testing.

While the performances of PCT and PCTWM are comparable,

PCTWM performs slightly better than PCT. Theoretically, PCTWM

improves over PCT for the programs having weaker memory behav-

iors than SC. Therefore, the observable performance improvement

of PCTWM over PCT depends on the amount of weak memory

behavior in the benchmark program under test.

6.3 PCTWM vs PCT
The performance improvement of PCTWM over PCT is more ob-

servable with increasing relaxed memory operations in the pro-

grams. In RQ3, we aim to address how the performance of PCTWM

improves over PCT for the programs with a higher amount of weak

memory behaviors. To do so, we insert relaxed write accesses in

the benchmark programs which do not affect the program behavior

or the depth of the concurrency bug. Essentially, we increase the

number of program events and the number of visible writes to

read-from for the read or RMW accesses.

In Figure 6, we observe significant differences in the bug detec-

tion rates of PCT and PCTWM. The bug detection ability of the

PCTWM stays stable while that of the PCT fluctuates. This empiri-

cal observation aligns with the probabilistic guarantees of PCT and

PCTWM. The increased number of program events in the modi-

fied benchmarks decreases the probability of detecting bugs with

PCT, which selects 𝑑 events to reorder out of all program events.

In contrast, the increased number of relaxed write operations in a

program does not affect the performance of PCTWM.

Probabilistic Concurrency Testing for Weak Memory Programs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

6.4 PCTWM vs C11Tester: Performance
Overhead

To answer RQ4, we evaluate the performance of C11Tester and

PCTWM on some real-world applications. We tested the appli-

cations using both single and multiple CPU cores. Table 4 lists

the performance assessment results averaged over 10 runs. We

compare the performance results of PCTWM to that of C11Tester

using the same measurements used earlier for the evaluation of

C11Tester [32]. Accordingly, we report the test throughput (in terms

of op/sec) for the Silo benchmark and the elapsed time (in seconds)

for the Mabain and Iris benchmarks.

In our experiments, both C11Tester and PCTWM detect data

races in all of these applications in single as well as multiple core

configurations. Considering individual applications, we do not ob-

serve a significant difference in the throughput result in Silo. In

Mabain and Iris, the execution time in PCTWM is higher than

C11Tester, around 10% and 16%, respectively. This can be explained

by the computation overhead in the PCTWM algorithm. PCTWM

computes the thread-local views and selects the values to read from

based on the local or global writes, whereas C11Tester does not

maintain this information and randomly selects a write operation

from the set of visible writes. Finally, we observe that the configu-

rations do not affect the performance as the C11Tester framework

runs one thread at a time.

Table 4: Performance on testing real-world applications. In
parentheses, we include the relative standard deviation.

core C11tester PCTWM

Silo single 12428 (0.58%) 11039 (7.38%)

(ops/sec) multiple 11987(0.61%) 11387 (6.92%)

Mabain single 7.73 (1.56%) 8.43 (4.11%)

(time/s) multiple 7.65 (2.48%) 8.40 (3.62%)

Iris single 10.98 (2.02%) 12.79 (4.78%)

(time/s) multiple 10.83 (1.88%) 12.43 (6.59%)

7 RELATEDWORK
Concurrency and consistency.Memory consistency models play

a crucial role in concurrent systems. Architectures [2, 3, 39, 42]

exhibit weak memory concurrency behaviors due to various ar-

chitectural features such as memory hierarchy, interconnect and

so on for performance reason. To gain performance from these

architectures, the high level programming languages also introduce

primitives and a number of programming models for weak memory

concurrency are defined [5, 6, 11, 20, 21, 25, 27, 33, 34, 41, 48]. In

this paper we follow the C/C++ concurrency model [5, 31, 34]. How-

ever, due to the subtle semantics of these primitives, writing weak

memory concurrent programs are often difficult and error prone.

Therefore weak memory concurrency pose a significant challenge

to testing and verification.

Testing and verification of weak memory concurrency. In
recent years a number of approaches are developed for weak mem-

ory verification [1, 3, 22, 38]. Verifying weak memory program is

even more challenging as it may require to explore larger set of

executions than SC. In this scenario testing [29–31] and dynamic

analysis [9, 10, 15] approaches for weak memory concurrency have

been effective in handling larger programs while sacrificing sound-

ness.

Concurrency testing. Many algorithms and tools have been

proposed for testing the concurrency behavior of programs running

under SC.

Systematic testing relies on a controlled scheduler that can en-

force a particular ordering of thread events in execution and enu-

merates test executions for the scheduler. Due to the explosion in

the number of possible executions of a concurrent program, testing

algorithms focused on exercising a bounded set of program be-

haviors. These include generating test executions with a bounded

number of context switches [43], nonpreemptive contexts [35],

scheduler delays [14], and phases [7].

Randomized testing aims at detecting bugs by randomly gener-

ated test executions, and they are shown [45] to be effective in prac-

tice. The randomized partial order sampling algorithm [44] is de-

signed to cover execution traces more uniformly than pure random

walk. The probabilistic concurrency testing (PCT) algorithm [8]

improved state-of-the-art by providing a theoretical guarantee on

the random testing. The parallel PCT algorithm (PPCT) [36] allows

the parallel execution of many threads instead of serializing them.

The PCT algorithm for multithreaded programs with a set of totally

ordered events is extended to distributed systems [23, 24, 37], to

capture a partially ordered set of events. The partial order sampling

(POS) algorithm [49] also provides theoretical probability bounds

on the generated tests. PCT differs from the other randomized al-

gorithms as it guarantees a probability of detecting bugs that is

exponentially low only in the bug depth, 𝑑 .

8 CONCLUSION
We presented the Probabilistic Concurrency Testing for Weak Mem-

ory (PCTWM) algorithm for testing weak memory concurrency

programs and provides theoretical guarantees on the probability

of detecting bugs. PCTWM extends the Probabilistic Concurrency

Testing (PCT) algorithm that is designed for SC programs to capture

weak memory concurrency. PCTWM achieves this by (i) revising

the existing notion of concurrency bug depth that is defined based

on thread interleavings to capture thread communications, and (ii)

devising an algorithm to sample a test execution from the set of pro-

gram behaviors with a bounded number of thread communication

relations.

We implemented PCTWM and evaluated its performance in

comparison to the state-of-the-art weak memory program testing

tool C11Tester. Our evaluation demonstrates that PCT and PCTWM

improve the C11Tester’s bug detection ability as they enhance

the hitting rate in most of these benchmarks. Moreover, PCTWM

outperforms PCT for testing the weak memory programs with more

relaxed write operations.

DATA-AVAILABILITY STATEMENT
The artifact is available on Zenodo [17]. Appendix A provides the

details on how to use the artifact and how to reproduce the results.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

A ARTIFACT APPENDIX
A.1 Abstract
The artifact is in https://doi.org/10.5281/zenodo.7225459. This is a

VagrantBox package (~6 GB) containing the artifact for the paper

‘Probabilistic Concurrency Testing for Weak Memory Programs’.

This vagrant package offers the experimental environment, which

contains all code, benchmarks, and scripts to reproduce the experi-

mental results in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: The scripts are offered to reproduce the results of
PCT and PCTWM algorithms, implemented on C11Tester. The

results of the original C11Tester experiments are listed in the

C11Tester paper, and we quote them in our paper.

• Metrics:We follow similar evaluationmetrics of original C11Tester.

The metric for evaluating the bug detection ability of each algo-

rithm is Bug Hitting Rate(%). It refers to the number of hitting the

bug in the benchmarks over 1000 rounds or 500 rounds. Average

Running time(ms) is evaluated for each data structure bench-

mark and real applications to show the speed of detecting the

bug. Throughout(ops/sec) is another metric when evaluating the

real-world applications.

A.3 Requirements
Hardware. The PC or computer should have memory larger than

64 GB and RAM larger than 16 GB.

Software.

• Install VirtualBox 6.1.26 (https://www.virtualbox.org/wiki/

Changelog-6.1#v26).

• Install VagrantBox 2.2.18 (https://www.vagrantup.com/intro/

v2.2.18).

Running Vagrantbox. To run the artifact’s vagrantbox, please

execute the commands below:

• It may require to run ‘vagrant init package.box’ in the artifact

root directory first.

• It may require to the add the following command to the

Vagrantfile, right before the final ‘end’.

config.vm.provider "virtualbox" do |v|

v.customize ["modifyvm", :id, "–uartmode1", "disconnected"]

end

• ‘vagrant up’

• It may require: ‘vagrant provision’

• vagrant ssh

A.4 Experimental Workflow
We evaluate the research questions (RQ) as follows:

• (RQ1, RQ2) We compute the bug hitting rate in 1000 runs on nine

benchmarks varying the parameters in Appendix A.5.

• (RQ3)We change the nine benchmarks by inserting more ‘relaxed

write’ accesses and compute the bug hitting rate in 1000 runs.

• (RQ4) We compute the throughput and average running time of

three real applications, and for nine benchmarks, we compute

the average running time.

The experiments can be run by the following python scripts.

• ‘result_pctwm.sh’ runs the PCTWM experiments,

• ‘result_pct.sh’ runs the PCTWM experiments, and

• ‘run_all.sh’ runs both PCT and PCTWM experiments.

The results can be observed in the console with the tips - ’results

for questions 1/2/3/4’. We manually plot the results in Figures 5

and 6, and Tables 1 to 4.

A.5 Experiment Customization
The parameters in our algorithms are as follows.

For the PCT algorithm. :

• -b: Bug depth

• -l: Number of shared access events

• -s: Seed number

For the PCTWM algorithm. :

• -d: Bug depth

• -k: Number of communication events

• -y: History depth

• -s: Seed number

REFERENCES
[1] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl

Leonardsson, and Konstantinos Sagonas. 2015. Stateless Model Checking for TSO

and PSO. In Tools and Algorithms for the Construction and Analysis of Systems

- 21st International Conference, TACAS 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April

11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9035), Christel

Baier and Cesare Tinelli (Eds.). Springer, 353–367. https://doi.org/10.1007/978-3-

662-46681-0_28

[2] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc

Maranget. 2021. Armed Cats: Formal Concurrency Modelling at Arm. ACM

Trans. Program. Lang. Syst. 43, 2 (2021), 8:1–8:54. https://doi.org/10.1145/3458926

[3] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.

Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. https://doi.org/10.1145/2627752

[4] Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC

atomics in C11 and OpenCL. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.

Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar

(Eds.). ACM, 634–648. https://doi.org/10.1145/2837614.2837637

[5] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.

Mathematizing C++ concurrency. In Proceedings of the 38th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,

TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 55–66.

https://doi.org/10.1145/1926385.1926394

[6] John Bender and Jens Palsberg. 2019. A formalization of Java’s concurrent access

modes. Proc. ACM Program. Lang. 3, OOPSLA (2019), 142:1–142:28. https:

//doi.org/10.1145/3360568

[7] Ahmed Bouajjani and Michael Emmi. 2012. Bounded Phase Analysis of Message-

Passing Programs. In Tools and Algorithms for the Construction and Analysis of

Systems - 18th International Conference, TACAS 2012, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,

March 24 - April 1, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7214),

Cormac Flanagan and Barbara König (Eds.). Springer, 451–465. https://doi.org/

10.1007/978-3-642-28756-5_31

[8] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-

garakatte. 2010. A randomized scheduler with probabilistic guarantees of finding

bugs. In Proceedings of the 15th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2010, Pittsburgh,

Pennsylvania, USA, March 13-17, 2010, James C. Hoe and Vikram S. Adve (Eds.).

ACM, 167–178. https://doi.org/10.1145/1736020.1736040

[9] Jacob Burnim, Koushik Sen, and Christos Stergiou. 2011. Testing concurrent

programs on relaxed memory models. In Proceedings of the 20th International

Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada,

July 17-21, 2011, Matthew B. Dwyer and Frank Tip (Eds.). ACM, 122–132. https:

//doi.org/10.1145/2001420.2001436

https://doi.org/10.5281/zenodo.7225459
https://www.virtualbox.org/wiki/Changelog-6. 1#v26
https://www.virtualbox.org/wiki/Changelog-6. 1#v26
https://www.vagrantup.com/intro/v2.2.18
https://www.vagrantup.com/intro/v2.2.18
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/3458926
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
https://doi.org/10.1145/3360568
https://doi.org/10.1007/978-3-642-28756-5_31
https://doi.org/10.1007/978-3-642-28756-5_31
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/2001420.2001436
https://doi.org/10.1145/2001420.2001436

Probabilistic Concurrency Testing for Weak Memory Programs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[10] Man Cao, Jake Roemer, Aritra Sengupta, and Michael D. Bond. 2016. Prescient

memory: exposing weak memory model behavior by looking into the future.

In Proceedings of the 2016 ACM SIGPLAN International Symposium on Memory

Management, Santa Barbara, CA, USA, June 14 - 14, 2016, Christine H. Flood and

Eddy Zheng Zhang (Eds.). ACM, 99–110. https://doi.org/10.1145/2926697.2926700

[11] Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air reads with

event structures. Proc. ACM Program. Lang. 3, POPL (2019), 70:1–70:28. https:

//doi.org/10.1145/3290383

[12] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer.

2020. RustBelt meets relaxed memory. Proc. ACM Program. Lang. 4, POPL (2020),

34:1–34:29. https://doi.org/10.1145/3371102

[13] Changxue Deng. 2018. Mabain: A fast and light-weighted key-value store library.

https://github.com/chxdeng/mabain.

[14] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-bounded

scheduling. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,

2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 411–422. https://doi.org/10.

1145/1926385.1926432

[15] Cormac Flanagan and Stephen N. Freund. 2010. Adversarial memory for detect-

ing destructive races. In Proceedings of the 2010 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario,

Canada, June 5-10, 2010, Benjamin G. Zorn and Alexander Aiken (Eds.). ACM,

244–254. https://doi.org/10.1145/1806596.1806625

[16] Mingyu Gao. 2022. Probabilistic Testing for Weak Memory Concurrency. Master’s

thesis. Delft University of Technnology.

[17] Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan. 2022. Proba-

bilistic Concurrency Testing for Weak Memory Programs — Artifact. Available

at https://doi.org/10.5281/zenodo.7225459.

[18] ISO/IEC 14882. 2011. Programming Language C++.

[19] ISO/IEC 9899. 2011. Programming Language C.

[20] Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Struc-

tures Model of Relaxed Memory. In Proceedings of the 31st Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8,

2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 759–767.

https://doi.org/10.1145/2933575.2934536

[21] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.

2017. A promising semantics for relaxed-memory concurrency. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D.

Gordon (Eds.). ACM, 175–189. https://doi.org/10.1145/3009837.3009850

[22] Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker

for Weak Memory Models. In Computer Aided Verification - 33rd International

Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture

Notes in Computer Science, Vol. 12759), Alexandra Silva and K. Rustan M. Leino

(Eds.). Springer, 427–440. https://doi.org/10.1007/978-3-030-81685-8_20

[23] Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Befrouei,

and Georg Weissenbacher. 2018. Randomized testing of distributed systems

with probabilistic guarantees. Proc. ACM Program. Lang. 2, OOPSLA (2018),

160:1–160:28. https://doi.org/10.1145/3276530

[24] Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. 2019. Trace aware

random testing for distributed systems. Proc. ACM Program. Lang. 3, OOPSLA

(2019), 180:1–180:29. https://doi.org/10.1145/3360606

[25] Ori Lahav and Udi Boker. 2022. What’s Decidable About Causally Consistent

Shared Memory? ACM Trans. Program. Lang. Syst. 44, 2 (2022), 8:1–8:55. https:

//doi.org/10.1145/3505273

[26] Ori Lahav and Roy Margalit. 2019. Robustness against release/acquire se-

mantics. In Proceedings of the 40th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June

22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 126–141.

https://doi.org/10.1145/3314221.3314604

[27] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.

2017. Repairing sequential consistency in C/C++11. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.).

ACM, 618–632. https://doi.org/10.1145/3062341.3062352 Technical Appendix

Available at https://plv.mpi-sws.org/scfix/full.pdf.

[28] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs. IEEE Trans. Computers 28, 9 (1979), 690–691.

https://doi.org/10.1109/TC.1979.1675439

[29] Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic race detection

for C++11. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe

Castagna and Andrew D. Gordon (Eds.). ACM, 443–457. https://doi.org/10.1145/

3009837.3009857

[30] Christopher Lidbury and Alastair F. Donaldson. 2019. Sparse record and replay

with controlled scheduling. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ,

USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM,

576–593. https://doi.org/10.1145/3314221.3314635

[31] Nian Liu, Binyu Zang, and Haibo Chen. 2020. No barrier in the road: a com-

prehensive study and optimization of ARM barriers. In PPoPP ’20: 25th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, San

Diego, California, USA, February 22-26, 2020, Rajiv Gupta and Xipeng Shen (Eds.).

ACM, 348–361. https://doi.org/10.1145/3332466.3374535

[32] Weiyu Luo and Brian Demsky. 2021. C11Tester: a race detector for C/C++ atomics.

In ASPLOS ’21: 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Virtual Event, USA, April 19-

23, 2021, Tim Sherwood, Emery D. Berger, and Christos Kozyrakis (Eds.). ACM,

630–646. https://doi.org/10.1145/3445814.3446711

[33] Jeremy Manson, William W. Pugh, and Sarita V. Adve. 2005. The Java memory

model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2005, Long Beach, California, USA, January

12-14, 2005, Jens Palsberg and Martín Abadi (Eds.). ACM, 378–391. https://doi.

org/10.1145/1040305.1040336

[34] Roy Margalit and Ori Lahav. 2021. Verifying observational robustness against

a c11-style memory model. Proc. ACM Program. Lang. 5, POPL (2021), 1–33.

https://doi.org/10.1145/3434285

[35] Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for

systematic testing of multithreaded programs. In Proceedings of the ACM SIGPLAN

2007 Conference on Programming Language Design and Implementation, San Diego,

California, USA, June 10-13, 2007, Jeanne Ferrante and Kathryn S. McKinley (Eds.).

ACM, 446–455. https://doi.org/10.1145/1250734.1250785

[36] Santosh Nagarakatte, Sebastian Burckhardt, Milo M. K. Martin, and Madanlal

Musuvathi. 2012. Multicore acceleration of priority-based schedulers for con-

currency bug detection. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek,

Haibo Lin, and Frank Tip (Eds.). ACM, 543–554. https://doi.org/10.1145/2254064.

2254128

[37] Filip Niksic. 2019. Combinatorial Constructions for Effective Testing. Ph. D. Disser-

tation. Technische Universität Kaiserslautern.

[38] Brian Norris and Brian Demsky. 2013. CDSchecker: checking concurrent data

structures written with C/C++ atomics. In Proceedings of the 2013 ACM SIGPLAN

International Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October

26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.).

ACM, 131–150. https://doi.org/10.1145/2509136.2509514

[39] Scott Owens. 2010. Reasoning about the Implementation of Concurrency Ab-

stractions on x86-TSO. In ECOOP 2010 - Object-Oriented Programming, 24th

European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings (Lecture

Notes in Computer Science, Vol. 6183), Theo D’Hondt (Ed.). Springer, 478–503.

https://doi.org/10.1007/978-3-642-14107-2_23

[40] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model:

x86-TSO. In Theorem Proving in Higher Order Logics, 22nd International Conference,

TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture Notes in

Computer Science, Vol. 5674), Stefan Berghofer, Tobias Nipkow, Christian Urban,

and Makarius Wenzel (Eds.). Springer, 391–407. https://doi.org/10.1007/978-3-

642-03359-9_27

[41] Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency semantics for

relaxed atomics that permits optimisation and avoids thin-air executions. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -

22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 622–633. https:

//doi.org/10.1145/2837614.2837616

[42] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and

Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic

and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018),

19:1–19:29. https://doi.org/10.1145/3158107

[43] Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of

Concurrent Software. In Tools and Algorithms for the Construction and Anal-

ysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Ed-

inburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in Computer Science,

Vol. 3440), Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 93–107.

https://doi.org/10.1007/978-3-540-31980-1_7

[44] Koushik Sen. 2007. Effective random testing of concurrent programs. In 22nd

IEEE/ACM International Conference on Automated Software Engineering (ASE 2007),

November 5-9, 2007, Atlanta, Georgia, USA, R. E. Kurt Stirewalt, Alexander Egyed,

and Bernd Fischer (Eds.). ACM, 323–332. https://doi.org/10.1145/1321631.1321679

[45] Paul Thomson, Alastair F. Donaldson, and Adam Betts. 2014. Concurrency testing

using schedule bounding: an empirical study. In ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’14, Orlando, FL, USA,

February 15-19, 2014, José E. Moreira and James R. Larus (Eds.). ACM, 15–28.

https://doi.org/10.1145/2555243.2555260

[46] Stephen Tu, Wenting Zheng, and Eddie Kohler. 2013. Silo: Multicore in-

memorystorage engine. https://github.com/stephentu/silo.

https://doi.org/10.1145/2926697.2926700
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3371102
https://github.com/chxdeng/mabain
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1145/1806596.1806625
https://doi.org/10.5281/zenodo.7225459
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3276530
https://doi.org/10.1145/3360606
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3062341.3062352
https://plv.mpi-sws.org/scfix/full.pdf
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/3314221.3314635
https://doi.org/10.1145/3332466.3374535
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/3434285
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/2254064.2254128
https://doi.org/10.1145/2254064.2254128
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/978-3-642-14107-2_23
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/3158107
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/2555243.2555260
https://github.com/stephentu/silo

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

[47] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy transactions in multicore in-memory databases. In ACM SIGOPS

24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,

November 3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, 18–32.

https://doi.org/10.1145/2517349.2522713

[48] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and

Francesco Zappa Nardelli. 2015. Common Compiler Optimisations are Invalid

in the C11 Memory Model and what we can do about it. In Proceedings of the

42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani

and DavidWalker (Eds.). ACM, 209–220. https://doi.org/10.1145/2676726.2676995

[49] Xinhao Yuan, Junfeng Yang, and Ronghui Gu. 2018. Partial Order Aware Concur-

rency Sampling. In Computer Aided Verification - 30th International Conference,

CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,

UK, July 14-17, 2018, Proceedings, Part II (Lecture Notes in Computer Science,

Vol. 10982), Hana Chockler and Georg Weissenbacher (Eds.). Springer, 317–335.

https://doi.org/10.1007/978-3-319-96142-2_20

[50] Xinjing Zhou. 2015. Iris: A low latency asynchronous C++ logging library.

https://github.com/zxjcarrot/iris.

Received 2022-07-07; accepted 2022-09-22

https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1007/978-3-319-96142-2_20
https://github.com/zxjcarrot/iris

	Abstract
	1 Introduction
	2 Background
	2.1 Weak Memory Concurrency
	2.2 PCT vs. Naive Random Testing.

	3 Overview
	3.1 A Naive Application of PCT to Weak Memory Concurrency
	3.2 Revising Concurrency Bug Depth
	3.3 PCTWM: PCT for Weak Memory

	4 Weak Memory Concurrency Model
	5 PCT for Weak Memory Programs
	5.1 Formal Definitions
	5.2 The PCTWM Algorithm
	5.3 Example Executions Generated by PCTWM
	5.4 The Probability of Detecting Bugs

	6 Experimental Evaluation
	6.1 The Effectiveness of PCTWM
	6.2 PCTWM vs C11Tester
	6.3 PCTWM vs PCT
	6.4 PCTWM vs C11Tester: Performance Overhead

	7 Related Work
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Requirements
	A.4 Experimental Workflow
	A.5 Experiment Customization

	References

