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Abstract
Recent discoveries of vulnerabilities in the design and implementation of Byzantine fault-tolerant
protocols underscore the need for testing and exploration techniques to ensure their correctness.
While there has been some recent effort for automated test generation for BFT protocols, there is
no benchmark framework available to systematically evaluate their performance.

We present ByzzBench, a benchmark framework designed to evaluate the performance of testing
algorithms in detecting Byzantine fault tolerance bugs. ByzzBench is designed for a standardized
implementation of BFT protocols and their execution in a controlled testing environment. It controls
the nondeterminism in the concurrency, network, and process faults in the protocol execution,
enabling the functionality to enforce particular execution scenarios and thereby facilitating the
implementation of testing algorithms for BFT protocols.
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1 Introduction

Byzantine Fault-Tolerant (BFT) protocols are at the heart of modern consortium-based
blockchain systems. These systems use BFT protocols to reach consensus on the total order
of transactions to commit, among a cluster of processes in a fault-tolerant manner. BFT
protocols promise correctness even if some processes in the cluster behave maliciously or
fail to follow the protocol specification. Along with the increasing popularity of blockchain
systems in the last decades, numerous BFT protocols have been proposed.

The correct design and implementation of BFT protocols is crucial to ensure the correct
functioning of these systems. However, BFT systems are prone to Byzantine fault tolerance
bugs, i.e., flaws or errors that break their fault-tolerance and correctness properties in
the presence of Byzantine and network attacks. These bugs allow attackers to exploit
vulnerabilities in the system, undermining its ability to maintain correct behavior, as any
mistake can lead to serious reliability and security problems with potentially catastrophic
consequences. Several studies [1, 27, 21, 5, 26, 34] have discovered vulnerabilities in various
BFT protocols and their implementations, underscoring the need for robust analysis and
testing methodologies.

Recent work [6, 34] proposes new methods for automated testing of Byzantine fault toler-
ance in large-scale distributed systems. Twins [6], which systematically tests for Byzantine
fault-tolerance by simulating Byzantine processes using twin replicas, is implemented in
DiemBFT [32] and is available in Diem’s production repository. ByzzFuzz [34], a randomized
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test generator simulating Byzantine faults using message mutations, is available to test the
implementations of Tendermint [8] and the XRP Ledger [29]. Given the discovery of new
Byzantine fault tolerance bugs in production BFT systems and their increasing popularity, we
can expect the development of more analysis and testing methods to analyze their correctness.

Despite advancements in automated test generation for Byzantine Fault Tolerance (BFT)
protocols, the evaluation of these algorithms is often limited to the specific systems for which
they were developed. The algorithms are assessed based on different implementations of
BFT systems, making it challenging to compare their results across various contexts. To
enable a comparative evaluation of their performance, it is necessary to have a collection of
benchmark applications that represent a diverse range of bugs. While such benchmark suites
exist for concurrency bugs such as RADBench [19] and JaConTeBe [22] or for programs with
defects in specific programming languages such as BegBunch [12], Defects4J [20], BEARS [24],
and GoBench [35] no such benchmark suite is available for Byzantine fault tolerance bugs.
ByzzBench specifically addresses these limitations by enabling Byzantine fault injection
capabilities and providing specialized property checkers, making it uniquely tailored to the
challenges faced in the design and implementation of BFT protocols.

A major challenge for building a benchmark suite of Byzantine fault tolerance bugs in BFT
protocols is the lack of a benchmarking framework that provides functionality for (i) uniform
implementation of BFT protocols and (ii) a controlled protocol execution environment to
facilitate the implementation of testing algorithms. Testing algorithms for BFT algorithms
generate execution scenarios with particular concurrency, network, and process behavior,
e.g., with particular delivery ordering or timing of the protocol messages, network faults to
delay or lose some messages, and Byzantine process faults with specific malicious behavior.
The enforcement of the generated test scenarios requires controlling the nondeterminism in
the executions of the systems under test to exercise the generated specific test scenarios,
which demands technical effort and makes it hard to test a broad set of BFT systems.

We present ByzzBench [28], a publicly available and extensible benchmark framework
for implementing BFT protocols and evaluating the performance of the testing algorithms in
detecting Byzantine fault tolerance bugs. The contribution of ByzzBench is two-fold. First,
it allows protocol designers to validate their protocol implementations by testing them using
the testing and exploration algorithms in the framework. Second, it allows functionality
and interfaces for implementing Byzantine fault tolerance testing protocols in a controlled
execution environment, offering a unified evaluation of testing methods on a set of benchmark
protocol implementations. In summary, ByzzBench allows the users to:

prototype BFT protocols in a unified framework of benchmark applications,
implement testing and exploration methods for BFT protocols in a unified framework,
evaluate relative performances of different testing and exploration methods,
gain insight about the BFT protocol vulnerability characteristics.

The long-term goal of this work is to build a comprehensive, publicly available benchmark
suite of BFT protocol implementations to evaluate the effectiveness of testing and exploration
tools for BFT protocols. As an initial step, this paper presents a benchmark framework for
BFT protocol implementations.

2 The Benchmark Framework

Figure 1 presents a high-level overview of the architecture of ByzzBench, with the main
components of (i) a cluster of processes running a BFT protocol for state machine replication,
(ii) client processes that submit requests to the cluster, (iii) controlled transport layer which
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Figure 1 High-level architecture of the ByzzBench framework

maintains the in-flight messages and delivers them to recipients, and (iv) an execution
controller, which dictates a specific execution scenario to the transport layer. The execution
controller allows the implementation of different BFT testing algorithms by offering control
over the timeouts, network faults, and benign and Byzantine process faults.

ByzzBench allows the implementation of BFT protocols by only focusing on the protocol
logic, avoiding the boilerplate code for state machine replication, message communication,
and command log operations. Similarly, it provides the controlled replica communication and
fault injection features available for test scenario generation algorithms. Hence, the algorithm
developers can implement their algorithms on top of the intercepted messages, decoupled
from the implementation of the protocol under test. Moreover, it has available correctness
checkers that run on the recorded replicated logs, which check for generic consensus properties
and can be extended with more checks by developers.

Although our current benchmarks and examples primarily target BFT consensus protocols,
ByzzBench is designed to be applicable to any BFT protocol, including those used for state
machine replication and broadcast.

2.1 Implementing BFT Protocol Benchmarks

BFT protocols establish a set of rules for message exchanges that enable a group of processes
to coordinate in the existence of some arbitrary process behavior. Each message includes
specific metadata related to the protocol, such as the current protocol step, which helps
the receiving processes understand the protocol’s state and respond appropriately. The
executions of the protocols are organized as a sequence of lock-step communication rounds in
which processes exchange messages following the protocol rules. In every round, the processes
can send messages to the other processes, receive and process the messages delivered in that
round, and update their local states accordingly. This process involves updating the local
state of the receiving process and may also include sending, multicasting, or broadcasting
new protocol messages to other processes.

ByzzBench models a cluster of Replica processes, which run the protocol for state
machine replication of processing Client requests. The Client processes submit operation
requests to the cluster and collect replies from the replicas. Given a set of concurrent
client requests, the Replica processes run the BFT protocol to agree on a total order of
client requests to commit in a similar fashion to Paxos or Raft protocols for state machine
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replication or the commitment of a total order of transactions in a blockchain system.
ByzzBench enables practical implementation of BFT protocol benchmarks by offering

essential features such as setting up a distributed cluster, enabling high-level message
communication and handling, and managing local replica logs that are typically employed
in BFT protocols. The framework implements Replica processes using the actor model of
programming [18], where each actor runs independently on their local states concurrently
to each other and communicates via point-to-point message exchanges over a potentially
faulty network. The local state of each Replica keeps the data for state machine replication,
including the local commit log, protocol state, cluster configuration, and other meta-data.

Implementing a BFT protocol benchmark in ByzzBench requires only extending a
Replica abstract class and implementing the initialization and message handler methods. To
simplify the implementation of message handlers, ByzzBench provides an API that allows
Replicas to exchange messages using various methods, including sending, broadcasting, and
multicasting. It also includes options for setting timeouts on time-triggered messages and a
common API for managing the commit log of a Replica, as provided in Appendix B.

ByzzBench currently provides two implementations of the PBFT protocol [11], i.e., the
buggy implementation in [10, 34] along with its correct implementation. Our ongoing work
extends the framework with the implementations of the BFT protocols in Appendix A.

2.2 Modeling Time
BFT protocols often employ time-triggered messages, which resend some protocol messages
or propose to advance protocol steps (e.g., for electing a new leader or moving to a new view)
in case of suspected failures. The nondeterminism in the time-triggered messages makes it
challenging for the BFT exploration algorithms to enumerate or reproduce executions.

ByzzBench controls the advancement of time during the protocol execution to ensure
reproducibility and enumeration. This is achieved through the Timekeeper component,
which manages time progression within each execution. Time-triggered messages can be
implemented by timeout-based method calls in the BFT replica interface to enable some
events only when a timeout has been reached. The Timekeeper also provides methods for
getting and advancing time to be used by the protocol implementations.

The test scenario generators can trigger the protocol’s timeout messages by advancing
the corresponding replica’s time value to the designated trigger value. This allows for the
controlled execution of time-based messages. The framework does not synchronize the clocks
of the distributed replicas and allows their local clocks to drift apart in certain execution
scenarios, as in the real-world execution of the protocols.

2.3 Modeling and Injecting Network and Process Faults
BFT protocols promise correctness even in the existence of network and Byzantine process
faults. However, recent studies [1, 27, 21, 5, 26, 34] have shown that several BFT protocols
fail to uphold their assumptions under these conditions. Therefore, it is crucial for a testing
algorithm to generate scenarios that incorporate network faults, such as isolating specific
processes or partitioning the network, as well as process faults, including benign crashes or
Byzantine behaviors.

Testing algorithms for consensus protocols [14, 6, 34] inject network and process faults
based on the communication rounds of the consensus protocols. The communication round
provides an abstraction of the protocol state and the step of the execution that is useful for
effectively specifying the period of faulty behaviors.
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ByzzBench supports round-based fault injection using an extended model of predicate-
based fault injection. The model describes a fault as a pair consisting of a boolean predicate
and a side effect, represented as (predicate, effect). The side effect effect on a message is
applied only if the message satisfies the predicate. This model facilitates round-based fault
injection by allowing the specification of the predicate for a particular protocol round, receiver,
and sender. Moreover, it enables specifying more general conditions (e.g., not only checking
the protocol round but any other information of the in-flight message or distributed cluster
state) for injecting faults for certain messages.

Operationally, ByzzBench injects specific faults into the execution of a BFT protocol
operating at the Transport layer. The Transport layer shown in Figure 1 maintains the
in-flight messages sent to the Replicas in their mailboxes. Depending on the prescribed
network faults in the scenario, it reorders the delivery of messages or drops some messages,
e.g., to isolate a process from the network or partition the network by dropping the messages
exchanged between partitions. Similarly, it can inject process faults by omitting, duplicating,
or modifying the in-flight messages sent from a Byzantine Replica.

2.4 Implementing Testing Algorithms for BFT Protocols
ByzzBench enables implementing algorithms for testing and exploration of BFT protocol
implementations using an Exploration Strategy interface. Simply, the developers implement
a testing algorithm by providing fault injection predicates as explained in Section 2.3 and
implement the functionality for selecting and processing the next in-flight message from
the transport layer. The transport layer enforces the delivery of or fault injection into the
selected in-flight message, as dictated by the exploration strategy. During the execution,
the processed messages and injected faults are recorded in an execution schedule and made
available for inspection after the execution.

ByzzBench currently provides the implementations of the following testing algorithms
for BFT protocols: a naive random fault injection algorithm, which decides to deliver, drop or
mutate messages at each execution step; ByzzFuzz randomized testing algorithm [34], which
models Byzantine faults using round-based small-scope message mutations, and a preliminary
implementation of the Twins systematic test scenario generator using twin replicas of the
processes. Our ongoing work explores the relative performances of these testing algorithms
in the exploration of bugs in the BFT protocol implementations.

2.5 Correctness Specification of BFT Protocol Executions
ByzzBench’s Property Checker checks the correctness of BFT protocol test executions by
checking the following correctness properties of BFT consensus [9]: (i) Agreement: No two
processes decide differently, (ii) No correct process decides twice, (iii) Validity: A correct
process may only decide a value that was proposed by a correct process, and (iv) Termination:
Every correct process eventually decides on some value.

Typically, BFT protocols promise the safety properties of agreement, integrity, and
validity under both synchronous and asynchronous network conditions. For the liveness
property of termination, most protocols rely on a partially synchronous network [15] to
overcome the FLP impossibility result [16] for asynchronous networks.

ByzzBench simulates a variant of partial synchrony, called eventual synchrony, by
employing a graceful period of execution without any faults after the execution of a test
scenario with some network and process faults. While eventual synchrony satisfies the
network assumptions of some BFT protocols, some protocols (e.g., Tendermint [8], Sync
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HotStuff [3]) rely on stronger synchronization and delivery requirements. ByzzBench leaves
the enforcement of the network assumptions of protocols to the developers, which depends
on the BFT protocol under test and the test generation algorithm.

ByzzBench checks the termination property by checking the two conditions of deadlock
and violation of bounded termination. The deadlock condition occurs when all the replicas’
mailboxes are empty, i.e., there are no available protocol messages to process, and the
cluster has not yet reached consensus. An example of such a deadlock condition occurs in
the violating execution of Fast Byzantine Consensus [25] uncovered in recent work [2]. In
that execution, the protocol rules lead to a stuck network state, where the processes do
not exchange any more messages and cannot make a decision. The violation of bounded
termination occurs when the processes continue exchanging messages, but the communication
does not lead to consensus in a predefined, bounded length of execution. The violations
to bounded termination do not guarantee that the detected execution is a violation of
(unbounded) termination, as it can return false positives. However, it is useful in detecting
termination violations. An example violation detected by this condition is the termination
violation in a previous version of the XRP Ledger [34], where some process faults lead to
corrupted states of some processes, preventing them from achieving consensus despite ongoing
message communication. ByzzBench checks bounded termination by checking agreement
for the client requests after an execution with a bounded duration of test execution.

ByzzBench checks the safety properties of agreement, integrity, and validity using the
replicas’ commit logs and the exchanged messages between the processes, which keep the
proposed values and commitment decisions.

In addition to these properties, the Property Checker supports specifying more expressive
predicates, allowing ByzzBench to be extended with progress-related checks that are crucial
for uncovering subtle liveness and fairness issues not captured by deadlock or bounded
termination alone.

3 Preliminary Evaluation on PBFT

We demonstrate how ByzzBench can be used to assess the effectiveness of different testing
algorithms through a preliminary evaluation on the seminal PBFT [11] protocol.

PBFT provides distributed agreement in a cluster of 3f + 1 processes, tolerating up to f

faulty processes, which can deviate arbitrarily from the protocol specification. An execution
of the PBFT protocol is decomposed into views, in each of which one of the processes acts as
a leader. In each view, the leader executes a sequence of client operations. For each request,
the leader broadcasts a proposal, followed by two rounds of message exchanges in which the
participants vote for the proposal. If a quorum agrees on the proposal, they execute the
operation and reply with the result to the client. Processes store the total order of executed
client operations in their message logs, and the protocol ensures that the correct processes
agree on their contents.

The ByzzBench framework provides a buggy implementation of the PBFT protocol
as a benchmark, seeding the same implementation errors found in the publicly available
implementation, PBFT-Java [10]. The benchmark is vulnerable to agreement violations
due to (i) incorrect assignment of sequence numbers in the protocol messages, (ii) incorrect
processing of prepared certificates, and (iii) missing implementation of message digests.

We compare the performance of detecting the agreement violations in the benchmark
using a recent testing algorithm, ByzzFuzz, compared to the naive random testing algorithm.
Table 1 lists the percentage of test executions out of 1000 runs that detect violations using
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Random BF(0,1) BF(0,2) BF(1,0) BF(1,1) BF(1,2) BF(2,0) BF(2,1) BF(2,2)
0.0% 0.0% 0.0% 7.1% 5.4% 5.0% 11.6% 9.2% 9.5%
Table 1 Percentage of test executions (out of 1000 runs) in which random and ByzzFuzz

testing strategies detected violations in PBFT-Java benchmark. ByzzFuzz results (denoted BF(c, d))
represent runs with c process and d network partition faults injected over 10 rounds (r = 10).

random testing and the ByzzFuzz algorithm. We evaluate ByzzFuzz using different algorithm
parameters, i.e., c = [0, 2] process faults and d = [0, 2] network partition faults distributed
into r = 10 protocol rounds of the execution. Our results show that ByzzFuzz can detect
violations more frequently than the naive random testing, in alignment with the findings in
the previous work [34]. Moreover, we observe that the increasing number of faults injected
into the execution increases the likelihood of exposing violations.

4 Related Work

Several benchmark frameworks have been designed for evaluating the testing approaches to
detect concurrency bugs [19, 22], data storage bugs [23], or benchmark programs in specific
programming languages [12, 20, 24, 35]. However, none of these frameworks target Byzantine
fault tolerance benchmarks and Byzantine fault tolerance bugs.

Previous work on BFT protocol benchmarks targets performance benchmarking under
various workloads, computation power, and network configurations. BFTSim [31] offers a
network simulator to evaluate protocol performance based on a range of network conditions.
BFT-Bench [17] evaluates and compares the performance of BFT protocols under faulty
network behaviors and workloads. BLOCKBENCH [13] targets private blockchains, allowing
fine-grained testing of the blockchain system to evaluate their performance under smart
contract workloads. BFTDiagnosis [33] is an automated fault injection framework for the
security evaluation of BFT protocols. Bedrock [4] explores the trade-offs between different
design space dimensions to determine the protocol that best meets application needs.

Unlike the existing work, which focuses on the performance of BFT protocols, ByzzBench
targets the correctness of BFT protocols and provides a framework to evaluate the perfor-
mances of exploration algorithms for detecting bugs in BFT protocol implementations.

5 Conclusions

We presented ByzzBench, an extensible benchmark framework for evaluating the testing
algorithms for Byzantine fault tolerance bugs. The framework offers practical implementation
of BFT protocols and provides functionality for developing testing algorithms to control the
time, network, and process fault nondeterminism in the executions of test scenarios.

ByzzBench lays the groundwork for benchmarking in this space, although it currently
has a limited set of built-in benchmark protocols and testing algorithms. At present, the
available benchmark applications include both correct and faulty implementations of PBFT,
and the built-in testing algorithms consist of a basic random tester, ByzzFuzz, and an initial
version of Twins. Our ongoing efforts aim to expand the range of implemented BFT protocols,
particularly those with known bugs, and to integrate state abstraction mechanisms.

The long-term objective of this work is to develop a comprehensive, publicly accessible
benchmark suite of BFT protocol implementations to assess the effectiveness of testing and
exploration algorithms for BFT protocols.
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Execution Parameters

Year Protocol Violation Bug Source #processes #views
(or blocks)

#process
faults

#network
faults Reference

2017 FaB liveness protocol 4 2 1 2 [1]
2017 Zyzzyva safety protocol 4 3 1 4 [1]
2019 hBFT safety protocol 4 2 2 2 [30]
2020 Sync HotStuff safety protocol 5 3 2 7 [27]
2020 XRPL liveness trust config 7 2 1 0 [5, 34]
2020 XRPL safety trust config 7 2 2 0 [5, 34]
2021 PBFT liveness protocol 4 1 2 0 [7]
2022 Fast-HotStuff safety protocol 4 11 0 3 [6]
2023 PBFT safety pbft-java 4 2 1 0 [34]
2023 XRPL liveness rippled v1.7.2 7 3 1 0 [34]

Table 2 BFT protocol benchmarks with known bugs in their design or implementation.

// Initialize this Replica
void initialize ();

// Handle a message received by this Replica
void handleMessage ( String sender , MessagePayload message );

Listing 1 Replica Interface in ByzzBench, for protocol implementations.

// Messaging API
void sendMessage ( MessagePayload message , String recipient );
public void broadcastMessage ( MessagePayload message );
public void multicastMessage ( MessagePayload message , SortedSet <String > recipients );

// Timeouts
long setTimeout ( String name , Runnable r, Duration timeout );
void clearTimeout (long eventId );
void clearAllTimeouts ();

// Commit Log
void commitOperation ( LogEntry operation );

// Time
Instant getCurrentTime ();

Listing 2 API available for Replicas in ByzzBench.

A Benchmark BFT Protocols

Our ongoing work extends the currently available BFT protocol benchmarks in ByzzBench
with implementations of BFT protocols with known protocol and implementation bugs from
the literature, as summarized in Table 2. The table shows the discovery year of the bug, the
violation type, and the source of the bug (i.e., whether it is a protocol, implementation, or
configuration bug). It also lists the number of processes, protocol views (or ledger blocks),
and protocol rounds with process and network faults in the violating execution, along with
the reference to the study reporting the violation.

B API for Implementing BFT Protocols

Listings 1 and 2 show the Replica Interface for implementing BFT protocols and the API
available for the Replicas for exchanging messages, setting timeout-based messages, and
committing operations to the replicated log.
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