
Evolutionary Approach for Concurrency Testing of
Ripple Blockchain Consensus Algorithm

Martijn van Meerten
Department of Software Technology

Delft University of Technology
Delft, the Netherlands

m.c.vanmeerten@student.tudelft.nl

Burcu Kulahcioglu Ozkan
Department of Software Technology

Delft University of Technology
Delft, the Netherlands

b.ozkan@tudelft.nl

Annibale Panichella
Department of Software Technology

Delft University of Technology
Delft, the Netherlands

a.panichella@tudelft.nl

Abstract—Blockchain systems are prone to concurrency bugs
due to the nondeterminism in the delivery order of messages
between the distributed nodes. These bugs are hard to detect
since they can only be triggered by a specific order or timing
of concurrent events in the execution. Systematic concurrency
testing techniques, which explore all possible delivery orderings
of messages to uncover concurrency bugs, are not scalable to large
distributed systems such as blockchains. Random concurrency
testing methods search for bugs in a randomly generated set of
executions and offer a practical testing method.

In this paper, we investigate the effectiveness of random
concurrency testing on blockchain systems using a case study on
the XRP Ledger of the Ripple blockchain, which maintains one of
the most popular cryptocurrencies in the market today. We test
the Ripple consensus algorithm of the XRP Ledger by exploring
different delivery orderings of consensus protocol messages.
Moreover, we design an evolutionary algorithm to guide the
random test case generation toward certain system behaviors
to discover concurrency bugs more efficiently. Our case study
shows that random concurrency testing is effective at detecting
concurrency bugs in blockchains, and the evolutionary approach
for test generation improves test efficiency. Our experiments
could successfully detect the bugs we seeded in the Ripple
source code. Moreover, we discovered a previously unknown
concurrency bug in the production implementation of Ripple.

Index Terms—Ripple, blockchains, distributed systems, con-
sensus, concurrency, evolutionary algorithms, software testing

I. INTRODUCTION

After the introduction of Bitcoin in 2008, cryptocurrencies

have been becoming mainstream. Financial Stability Board

states that fast-evolving crypto-assets markets could reach a

point where they represent a threat to global financial stability

due to their scale, structural vulnerabilities, and increasing

interconnectedness with the traditional financial system [1].

Increasing dependence on crypto-assets’ financial stability

emphasizes the need for reliable and robust technologies to

manage them.

Blockchain is the driving technology behind Bitcoin and

most other cryptocurrencies that followed. It allows for de-

centralization as it does not require a central trusted authority

to execute and monitor transactions. A blockchain is a form

of a distributed ledger where details on transactions and

accounts are stored in blocks that are chained mathematically.

A blockchain system consists of a network of nodes replicating

a service and issuing client transactions on the blockchain

ledger. The nodes participating in the network must agree on

the transactions contained in a block and the total order of

blocks in the blockchain.

The core of a blockchain system is the consensus mecha-

nism that provides distributed agreement among the nodes in

the blockchain network. The nodes use a consensus algorithm

(a.k.a. consensus protocol) to validate transactions, group them

into blocks, and chain them into a totally ordered set of blocks.

The consensus protocol specifies rules for exchanging and

processing messages between the nodes to achieve agreement

on the state of the blockchain. The correctness of the consen-

sus mechanism is crucial for the blockchain nodes to commit

and append the same blocks of client transactions in the

blockchain. Incorrect design or implementation of consensus

mechanisms can cause forks in the network, leading to serious

reliability and security problems. For example, consensus vio-

lations can manifest as an inability to issue any transactions or

issuing conflicting transactions, resulting in security problems

such as double-spending. Finding bugs before the deployment

of systems is critical, especially for blockchain applications

with immutable blocks of issued transactions.

As with other distributed systems, blockchains are prone to

concurrency bugs due to the nondeterminism in the delivery

order and timing of the messages in an execution. In exe-

cuting a distributed system, the participating nodes execute

at arbitrary speeds and only synchronize and communicate

through exchanging asynchronous messages. The concurrency

nondeterminism gives rise to many possible delivery orderings

of the messages. Depending on the processing order of the

protocol messages, the nodes can result in different possible

internal states. Unexpected orderings of message delivery can

bring the system into unexpected state changes, which might

result in concurrency bugs [2], [3].

This paper describes a case study for concurrency testing

of Ripple, the large-scale enterprise blockchain application

for global payments. At the time of this submission, Ripple’s

global payments network includes over 300 leading partners

in the finance sector in 40+ countries, six continents and

reached over 1.29 million transactions per day. This makes

Ripple a unique case study for assessing the effectiveness and

scalability of concurrency testing approaches.
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We test the Ripple XRP Distributed Ledger to search

for concurrency bugs in the Ripple Consensus Algorithm

(RCA), which guarantees agreement on the next ledger to

append to the Ripple blockchain. Although RCA runs in

a distributed setting with concurrency nondeterminism, its

design and implementation heavily rely on a common notion

of time and synchronous execution of the nodes in the Ripple

network. Our case study explores whether RCA continues

to satisfy agreement in subtle concurrency scenarios with

different delivery orderings and timings of the messages.

We use two approaches for the concurrency exploration

of RCA. First, motivated by the empirical evidence for the

success of random concurrency testing [4], we investigate the

effectiveness of two random concurrency testing methods to

search for concurrency bugs in blockchain systems: Delay-

based random testing (RandomDelay) and priority-based ran-

dom testing (RandomPriority). These methods are practical

to implement for large systems as they do not require static

or dynamic analysis of the source code, but they build on

a simple interception layer that can delay the delivery of a

message. Delay-based testing method delays the delivery of

the messages for a randomly selected amount of time. The

priority-based testing method assigns random priorities to the

messages and delivers them in the order of their priorities.

Second, we design an evolutionary search-based test case

generation algorithm to investigate whether we can improve

the performance of random testing by guiding the search

for problematic executions. We describe two different fitness

functions to direct the search toward certain system behaviors:

T imeFitness to direct the search to the executions that take

longer time, and ProposalF itness to direct the search to

the executions that use more number of proposals to achieve

an agreement. We evaluate the performance of the testing

methods on three versions of the RCA source code that we

seeded with some concurrency bugs.

Our experimental results show that random testing is effec-

tive at detecting concurrency bugs in large-scale blockchain

systems, and our evolutionary search-based test case gener-

ation improves the testing performance. In our evaluation,

the delay-based random concurrency testing method and the

evolutionary testing approach could successfully detect all

the concurrency bugs seeded in the system’s code. Moreover,

we discovered a previously unknown concurrency bug in the

production implementation of RCA. The buggy execution

violates termination, i.e., it causes the Ripple nodes to be stuck

while trying to make an agreement for the set of transactions

to be committed.

This paper makes the following contributions:

• A case study on the effectiveness of random concurrency

testing on the Ripple blockchain system

• A new evolutionary algorithm for concurrency testing that

guides the random generation of test cases toward certain

behaviors of distributed systems

• Discovery of a new concurrency bug in the production

implementation of Ripple

• A set of challenges and opportunities for future work on

search-based concurrency testing

II. RELATED WORK

A. Concurrency Testing for Distributed Systems

A large number of concurrency testing tools for distributed

systems systematically explore the possible executions of a

system, including dBug [5], MoDist [6], Concuerror [7],

DeMeter [8], SAMC [9], and FlyMC [10]. These tools exhaus-

tively exercise all possible reorderings of the concurrent events

in execution, and they mainly differ in their target system

under test. Although they employ partial order reduction tech-

niques [11], [12] to reduce the set of generated test executions,

they suffer from the state space explosion that makes them

impractical to apply for large-scale systems and blockchains.

Alternative to systematic testing, randomized concurrency

testing aims to detect buggy executions by running randomly

generated orderings of the events in an execution. Jepsen [13],

[14] and CoFI [15] test distributed systems by exercising

their behaviors under random network partitions. Probabilistic

concurrency testing (PCT) [16], [17] generate random test

executions that provide nontrivial theoretical guarantees for

detecting concurrency bugs. To increase the diversity of ran-

domly generated test executions, RaPOS [18], TaPCT [19],

and Morpheus [20] employ partial order reduction; the work

in [21] exploits semantic reduction, and QL [22] uses re-

inforcement learning to achieve high coverage of system

behaviors. While there has been some work on directing

multithreaded program test executions towards increased cov-

erage [23], [24], or guiding the exploration towards bug

patterns in multithreaded programs [25], [26], they are not

directly applicable to exploration of distributed consensus

systems towards subtle concurrency behaviors.

Previous work showed that random testing outperformed

systematic search at finding errors in real-world concurrent

programs [4] and theoretically explained the effectiveness of

random test generation [14] for covering a large set of be-

haviors correlated with distributed system bugs. In this work,

we aim to investigate the effectiveness of random concurrency

testing algorithms for detecting concurrency errors in the large-

scale blockchain system, Ripple. Then, we explore whether we

can improve the test efficiency by guiding the generation of

test cases using an evolutionary algorithm.

B. Test Case Generation using Evolutionary Algorithms

Evolutionary algorithms (EAs) have been widely used in

the literature to automate the process of generating test cases.

Within the search-based software testing (SBST) umbrella,

EAs have been successfully applied to evolve and optimize

test cases toward achieving desired testing goals [27]. Given

a set of testing goals (e.g., branches in the code), EAs are

guided by a fitness function that measures how distant the

test execution is from reaching those goals [28]–[30]. The

existing body of research has shown how EAs are particularly

effective for different testing levels, including unit (e.g., [31]),

integration [32], and system level [33], [34]. Furthermore,
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EAs outperform random testing when the goal is to achieve

high coverage [35], detect unit-level bugs [36], [37], or testing

complex systems [34]. In this work, we aim to investigate the

effectiveness of EAs when applied to detect concurrency bugs

in Ripple’s large-scale blockchain application.

III. THE RIPPLE CONSENSUS ALGORITHM

A. RCA Overview

The XRP Ledger of the Ripple blockchain uses the Ripple

Consensus Algorithm (RCA)1 to achieve agreement on the

global order of blocks of transactions in the Ripple net-

work. Unlike the early blockchain systems such as Bitcoin

and Ethereum, RCA builds on the classical Byzantine fault-

tolerance (BFT) style consensus and follows the basic design

principles of the seminal Practical Byzantine Fault Tolerance

(PBFT) algorithm [40]. Similar to PBFT, RCA is Byzantine

fault-tolerant, i.e., it can tolerate malicious process behaviors,

also known as Byzantine behavior [41], to a certain degree.

Different from PBFT, which assumes a known set of protocol

participants, Ripple is designed for the blockchain ecosystem

that offers open membership. Each node in the Ripple network

defines the set of protocol participants it trusts in a so-called

Unique Node List (UNL) and runs the protocol using the votes

from these nodes. RCA guarantees correctness as long as 80%

of the UNL nodes are honest, i.e., non-Byzantine.

B. RCA Protocol Steps

The Ripple consensus protocol runs as a sequence of

synchronized consensus rounds in each of which the nodes in

the network agree on a set of transactions to be executed. The

Ripple nodes can receive transactions at any time concurrently

to the execution of the consensus protocol rounds.

The design and implementation of RCA heavily rely on

a common notion of time and synchronous execution of the

nodes in the network. The transitions between the protocol

steps are identified by predefined durations of time intervals,

which are triggered by periodic timer messages.

Figure 1 illustrates an execution of the protocol with two

client transactions that are submitted to the nodes p1 and p2,

respectively. For simplicity, we show the message exchanges

only between p1 and p2. We denote the protocol messages by

rectangles and internally created objects with diamonds.

The execution of a consensus round has three phases: open,

establish, and accepted.

a) Open phase: The nodes collect the submitted trans-

actions to include in the next ledger and disseminate the

received transactions to the other nodes (TX and TX’ messages

respectively, in Figure 1) in their UNLs. A node stays in the

open phase for half of the duration of the previous consensus

round and then moves to the establish phase.

1Ripple’s consensus protocol is referred to as Ripple Consensus Algorithm
(RCA) in the white paper [38] and as XRP Ledger Consensus Protocol (XRP
LCP) in the updated presentation of the protocol [39].
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Fig. 1: An execution of the Ripple Consensus Algorithm

(RCA). For simplicity, we show the message exchanges only

between p1 and p2. We denote the protocol messages with

rectangles and internally created objects with diamonds.

b) Establish phase: The nodes try to reach a consensus

on the set of transactions to be included in the next ledger.

They repeatedly exchange the set of transactions they propose

for the next ledger in the proposal messages (PRP messages

in Figure 1)). The sets of transactions proposed by the nodes

can differ due to network asynchrony or process faults. A

node receiving proposals from others creates a list of disputed
transactions, which are the set of transactions not supported by

the nodes in the UNL. These include transactions in a received

proposal but not existent in their own proposal or transactions

in their own proposal but not in the received proposal.

The nodes update their proposals by adding new transactions

if most of the nodes in their UNL propose these transactions or

removing disputed transactions from their proposal if most of

the nodes in their UNL dispute them. The nodes iteratively

send the updated proposal to the other nodes in its UNL.

Transactions become disputed with an increasing threshold

through an avalanche protocol. At the start of the establish

phase, transactions become disputed when less than 50% of a

node’s UNL proposals contain it. This threshold increases to

65%, 70%, and finally 95% as the duration of the establish

phase compared to the previous round’s duration increases.

A node declares consensus on the transaction set if it

reaches agreement with 80% of the nodes in its UNL before

a predefined duration of time. If the node reaches consensus,

it moves to the validation phase. Otherwise, it returns to the

open phase.

c) Validation phase: The nodes validate that they decided

on the same ledger and finalize the ledger version. They

compute the ledger from the agreed set of transactions and

send the new ledger’s hash in a validation message (VAL
in Figure 1). The nodes collect validations until they receive

the same validated ledger hash from ≥80% of the nodes in

their UNL. When the new ledger is then fully validated, the

nodes apply transactions in the ledger, which are final and

irreversible.

Example. In the example execution given in Figure 1, the

client submits two conflicting transactions (e.g., each of which

spends all the money in the same account) to different nodes

p1 and p2 (TX messages). In the open phase, the nodes add

the transactions they receive to their open ledgers. The node

p1 adds the blue transaction, p2 adds the yellow transaction

in their open ledgers, and they relay the transactions they
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Fig. 2: Two alternative executions of RCA due to concurrency

nondeterminism. The execution on the left commits the blue

transaction, and the right commits the yellow transaction.

received (TX’ messages). The relayed transactions are dis-

carded as they conflict with the transaction already in the open

ledger. In the establish phase, the nodes share their proposed

ledgers (PRP-1), and they discover that they are missing a

transaction. They create a TransactionAcquire (TA) object,

which periodically broadcasts GetLedger (GL) messages in an

attempt to acquire the missing transaction. Upon receiving the

GL message, the node with the requested transaction sends

a LedgerData (LD) message containing the transaction. The

nodes p1 and p2 acquire the missing transactions during

the establish phase and they create disputes (CD). Since the

transactions in this example conflict with each other (e.g., they

carry the same sequence number), none of the transactions

get a sufficient amount of votes, and both nodes remove their

respective transactions. The nodes propose ledgers with an

empty set of transactions (PRP-2), achieve consensus, and

validate the empty ledger.

C. Concurrency Nondeterminism in the Executions

Due to asynchronous message communication and the con-

currency nondeterminism in the delivery of protocol messages,

a set of client transactions can be processed by many possible

executions. When conflicting transactions are submitted simul-

taneously to different nodes, the delivery order of concurrent

messages determines the transactions that are committed.

The execution in Figure 1 commits none of the two conflict-

ing transactions because the transaction submission messages

(TX) are delivered before the transaction relay messages

(TX’). Here, we provide two alternative executions, in one

of which the network commits the blue transaction, and in the

other, it commits the yellow transaction.

Figure 2 illustrates how different delivery orderings of

messages result in different transactions being committed in a

ledger. In the execution on the left, the blue transaction relay

message from p1 to p2 (TX’) arrives before the yellow trans-

action submission message from the client to p2 (TX). Since

p2 has already added the blue transaction in its open ledger,

it refuses the conflicting yellow transaction from the client.

The nodes agree on the ledger having the blue transaction

and validate it. Alternatively, the yellow transaction’s relay

message can arrive before the blue transaction submission

message from the client to p2 (as in the execution on the

right). In that case, the yellow transaction is committed, and

the blue transaction gets refused.

D. Correctness Specification: Safety and Liveness Properties

The correctness of distributed consensus protocols is spec-

ified by the following safety and liveness properties [42]:

1) Agreement No two nodes decide differently.

2) Validity If a node decides a value, then that value was

proposed by some node.

3) Integrity No node decides twice.

4) Termination Every node eventually decides some value.

In the context of blockchain consensus protocols, deciding

a value refers to deciding on a ledger to be appended to the

blockchain. The agreement, validity, and integrity are safety

properties that ensure nothing bad will happen in the execu-

tion. An example of a safety violation is disagreement among

the nodes that can cause forks in the network. The termination

property is a liveness property that ensures something good
will eventually happen. An example of a liveness violation is

an execution where the nodes do not make any progress in

processing client requests, rendering the system unresponsive.

IV. SEARCH-BASED TESTING OF RCA

The testing goal is to uncover concurrency bugs by search-

ing over the space of possible schedules. A search algorithm

has to be capable of changing schedules in a meaningful and

direct way. Creating schedules before their execution runs the

risk of creating infeasible schedules, e.g., an event might be

scheduled at a moment when it is not enabled. Furthermore,

due to the lack of control of the nodes’ initial states, it is

impossible to force the execution of a predetermined schedule.

In practice, this means that the messages sent by the nodes in

the network form an initial schedule. This schedule can be

changed by reordering the delivery of messages. A challenge

is that this initial schedule is non-deterministic and not known

before executing the schedule. At this time, any search algo-

rithm will need to be acting to change the schedule. Therefore,

any changes to schedules need to be made online.

In this paper, we investigate three search algorithms: two

variants of random search (RS) and an evolutionary algorithm

(EA). In the following subsections, we describe how we

customized these search algorithms for testing the Ripple

consensus algorithm. While our paper focuses on this real-

world and large-scale application, our approaches can be

applied to test different consensus algorithms.

A. Random Testing

Random testing (or random search) is the simplest search

algorithm to implement [43], [44] and often recommended

as a baseline to assess new testing techniques [45]. It naive

randomly samples the search space of schedules and evaluates

them to check whether a concurrency bug has been uncovered.

In particular, the algorithm generates N random schedules,

runs them, and stores those revealing one or more bugs. We

considered two different variants of random testing, which

differ in how the test cases are encoded and executed. The

following paragraphs detail the main characteristics of these

two variants.
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TABLE I: Message types mapped by the genotype

Message Type Description
ProposeSet-0 Contains the transaction set that the sending node

proposes for the next ledger. Monotonically increases
with each subsequent proposal i.

ProposeSet-i Contains the set of transactions for ProposeSeq = i
ProposeSetBowOut Indicates that a node no longer actively participates

in the current consensus round.
StatusChange Indicates that a node closes an open ledger or accepts

a new ledger.
Validation Contains the ledger hash, and ledger sequence that a

node believes should be validated.
Transaction Contains a transaction submitted to the network.
HaveTransactionSet Indicates that the sender node has acquired a partic-

ular transaction set.
GetLedger Fetches transactions and ledgers from other nodes.
LedgerData Sends transactions and ledgers to other nodes.

1) Priority-based Random Testing: Priority-based random

testing samples an ordering of messages in a distributed system

execution using the basic Partial order Aware Concurrency

Sampling (POS) algorithm [20], [46]. The algorithm randomly

assigns a priority value for each message in flight and delivers

them in the order of their priorities. Assignment of different

priority values to the messages results in different delivery

orderings of the messages.

A test case in priority-based random testing is represented as

a sequence (or schedule) of events mapped to priorities, where

each event is a tuple 〈sender, receiver, message〉 that

represents the delivery of message from the sender node to

the receiver node. The types of messages we use in a test

case are listed in Table I, which are the messages exchanged

in the execution of the Ripple consensus algorithm.

Each event in a test case is assigned a randomly generated

priority value. The mapping between events and their priority

is handled by a priority scheduler, whose pseudocode is shown

in Algorithm 1. The scheduler collects the messages sent by

the nodes in an inbox (line 3) and delivers them at a variable

rate r. Each time the scheduler wants to execute an event,

the event with the highest priority is picked from the inbox

and executed (line 6). The inbox is implemented as a priority

queue, sorted in descending order on the priority of the events.

Figure 4 shows an example execution of priority scheduling

in a simplified execution of a network with two nodes and two

message types. The event mapping is shown in Figure 3a. The

vertical lines in Figure 4 depict the moments in time when a

new event is picked from the inbox and executed. The events

shown in the inbox are sorted on priority, where the highest

in the column has the highest priority and is executed next.

This example changes the initial schedule

sinit = 〈p2 : PR〉, 〈p1 : PR〉, 〈p2 : SC〉, 〈p1 : SC〉,
to

snew = 〈p1 : PR〉, 〈p2 : SC〉, 〈p1 : SC〉, 〈p2 : PR〉.
The variable rate at which the scheduler executes events is

based on two objectives: (1) to have as many enabled events

in the inbox as possible; and (2) to not delay events by too

Algorithm 1: Pseudocode of the priority scheduler

Data: eventMapping, inbox, rate
/* A message is received from one of the nodes

*/
1 onRecvMessage(from, to, type):

/* Get priority from eventMapping */
2 priority ← eventMapping(from, to, type)

/* Put into the inbox based on priority */
3 inbox.push(Message, priority)
4 Function priorityScheduler():
5 Loop at rate

/* Get the event with the highest
priority */

6 message ← inbox.pop()
/* Deliver the message */

7 execute(message)
/* Adjust rate based on inbox size */

8 rate ← adjustRate()
9 end

(a) Event mapping to priorities (b) Event mapping to delays

Fig. 3: Event mappings for (a) priority-based and (b) delay-

based random scheduling.

much. The first objective is to give the scheduler as many

reordering options as possible. The second objective is not

to delay events for too long, which will cause the receiver

to ignore the message. The rate r is the number of events

executed per second. The base rate is equal to half the number

of events rbase = |events|
2 . Each time the scheduler executes

an event, the rate is updated based on the inbox size (line 8

of Algorithm 1) as follows:

ri+1 =

⎧⎪⎨
⎪⎩

min (ri × s, |events|), if |inbox| > target ∗ overflow.

max

(
ri
s
,
|events|

6

)
, if |inbox| < target ∗ underflow.

ri, otherwise
(1)

where s is the sensitivity ratio; target denotes the target size

Fig. 4: An example execution of priority scheduling in a

network with two nodes: p1 and p2, and two message types:

StatusChange (SC) and Proposal (PR)
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Algorithm 2: Pseudocode of the delay scheduler

Data: eventMapping
1 Function delayScheduler():

/* A message is received from a node */
2 onRecvMessage(from, to, type):

/* Get delay from eventMapping */
3 delay ← eventMapping(from, to, type)
4 schedule(Message, delay)
5 end
6 Function schedule(Message, delay):
7 after(delay): /* Wait for delay ms */
8 execute(Message) /* Deliver the message */
9 end

Fig. 5: An example execution of delay scheduling in a net-

work with two nodes: p1 and p2, and two message types:

StatusChange (SC) and Proposal (PR)

of the inbox; overflow is the percentage over the target inbox

size; and underflow is the percentage under the target inbox

size. The rate is clamped by |events|/6 ≤ r ≤ |events|.

2) Delay-based Random Testing: Delay-based random

scheduling adopts early schedule perturbation methods for

multithreaded concurrency [47], [48] to the distributed setting.

Instead of delaying the execution of a thread event by inserting

thread sleep statements, it delays the execution of a message by

delaying its delivery. It delays the delivery of each message for

a random amount of time and delivers them after that timeout.

This search algorithm employs a delay scheduling, which

maps events to a time delay in milliseconds. Applying different

delays to different events will reorder them and does not

require collecting messages in an inbox. Hence, a test case is

encoded as a vector of integers representing the time delay in

milliseconds applied to each event. Figure 5 shows an example

execution based on delay scheduling using the event mapping

in Figure 3b.

Algorithm 2 shows the pseudocode for the delay scheduler.

This scheduler does not have an inbox and rate. Instead, in

delayScheduler, it continually listens to messages from

nodes (onRecv). When a message is received, it looks up the

delay in the event mapping and schedules the execution with

schedule. This function waits for delay milliseconds before

executing the message.

Algorithm 3: Pseudocode of the (μ+ λ) EA

1 Function EA(μ, λ):
2 parents, offspring ← init(μ, λ)
3 while t < search budget do
4 evaluate(offspring)
5 parents← selection(parents + offspring)
6 offspring ← recombination(parents)
7 end
8
9 Function init(μ, λ):

10 initial population← sampleGenotypes(λ)
11 evaluate(initial population)
12 parents← selection(initial population, μ)
13 offspring ← recombination(parents, λ)
14 return parents, offspring
15
16 Function recombination(parents, λ):
17 offspring ← crossover(parents, λ)
18 for individual ∈ offspring do
19 mutation(individual)
20 end
21 return offspring

B. Evolutionary Testing

The third search algorithm we implemented and evaluated

is the (μ+λ) evolutionary algorithm [49]. The algorithm (see

Algorithm 3) starts with a population of λ individuals. The

best μ individuals are selected as parents to breed λ offspring.

The offspring individuals are created by recombining the

parents solutions using the crossover and mutation operators

as indicated in the recombination function in Algorithm

3. From the μ parents and λ offspring, the best μ individuals

are selected as parents for the next generation. This process

repeats until the search budget is expended or a bug is found.

The evaluation of one schedule takes roughly 20 seconds, so

the values for μ and λ are chosen to be rather small. μ = 4
and λ = 4. Small values for μ and λ are widely recommended

in the literature for expensive fitness functions [45], [50].

In the following paragraphs, we describe the problem repre-

sentation, the evolutionary operators, and the fitness functions

used by the (μ+ λ) evolutionary algorithm in detail.

1) Encoding: A solution (or individual) for the evolutionary

algorithm is encoded (or represented) using the delay schedul-

ing as done for the delayed-based random testing. Hence, a

test case T = [t1, . . . , tn] is a vector of integers, where each

element ti denotes the delay time (in millisecond) for the i−th
event in the test case. As done for the random testing, also in

this case each event is a tuple 〈sender node, receiver
node, message type〉, where the message type is one of

the types in Table I.

2) Crossover Operators: The crossover operator recom-

bines two individuals to create new individuals. We use a

simulated binary crossover (SBX) [51], [52], which simulates

one-point crossover in binary-encoded problems for real-

valued vectors (as in our case). Two children c1 and c2 are

created from two parents p1 and p2 as follows:
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c1,k = 0.5[p1,k + p2,k − βk(p1,k − p2,k)]

c2,k = 0.5[p1,k + p2,k − βk(p1,k − p2,k)]

Where c1,k is the kth gene in c1 and p1,k, p2,k is the kth gene in
p1 and p2 respectively. βk is a random number generated from the
probability density function

p(β) =

{
0.5(ηc + 1)βηc , if 0 ≤ β ≤ 1
0.5(ηc + 1) 1

βηc+2 , if β > 1

ηc is a user-chosen distribution index. According to the

original SBX paper [52], values for ηc between 2 and 5 closely

match one-point crossover in binary-coded EAs. Smaller ηc
results in child genes further from the parent’s genes and vice

versa. We use ηc = 3. The individual genes are recombined

with probability 0.5, otherwise, the parent’s genes are copied

to the children. This probability is also used in [51].

3) Mutation Operators: The mutation operator changes

individuals slightly to improve exploration. In Algorithm 3,

the mutation function denotes when mutation is applied

to an individual. We use the Gaussian mutation [53] for the

mutation operator on delay genotypes. A gene xi is mutated

by adding a sample from a Gaussian distribution N (μ, σ2),
where μ = xi and σ = (bi − ai)/100, ai ≤ xi ≤ bi [53]. The

mutation probability is set to 1
n , so that, on average, one gene

gets mutated per input vector per generation. This probability

is most commonly used in the literature [53].

4) Fitness Function: The effectiveness of evolutionary al-

gorithms strongly depends on the guidance the fitness function

provides. In our context, the guidance corresponds to the

scores the fitness function assigns to different schedules and

how it awards schedules closer to finding a concurrency bug.

Determining the proximity to finding a bug is difficult. Bugs

come in many variations, each having different characteristics

and symptoms. The defining characteristic of concurrency

bugs is the cause: a specific interleaving of events, not the

result. Therefore, measuring the proximity to a concurrency

bug through a fitness function is not trivial. For this reason,

we defined two heuristics (or fitness functions) that reward

schedules resulting in rarer and more complex executions.

Given the space of schedules S, a fitness function

f : S → R,

maps every schedule s ∈ S to a real number, whose value

depends on the result of the test case TC execution.

Time fitness. The first heuristic (or fitness function) mea-

sures the time taken to complete the test case, i.e., to complete

all its events:

ft(s) = TC(s)time (2)

Intuitively, as the nodes take longer to validate the submit-

ted transactions, the schedule can result in a more complex

execution. In addition, this fitness function directly rewards

schedules closer to violating RCA’s termination property.

Proposal fitness. This second fitness function utilizes the

sequence number carried in proposal messages. As nodes

have more difficulty reaching an agreement on the transaction

set, they send more proposal messages in a single consensus

round. Each subsequent proposal message from a node carries

a higher sequence number. A fitness function that rewards

schedules with higher maximum proposal sequences can guide

the algorithm towards schedules that result in more complex

establish phases and deliberation rounds.

A bowout proposal contains a sequence number of

4294967295 (The highest unsigned 32 bit number),

which would by definition reward a TC(s) with

e = 〈 , ,prop.bowout〉 ∈ s, the highest possible

fitness value. This is undesirable, but we do want to use

this information in the fitness function. Bowout proposals

indicate a node switched ledgers during consensus, which

does not frequently happen in common executions. Therefore,

we add the number of bowout proposals in the schedule to

the fitness function. To preserve the relative influence of both

parts of the fitness function, we scale the highest proposal

sequence number by the number of nodes n in the network.

The function below excludes bowout proposals from prop
and denotes these as bowout:

fp(s) = n× max
e=〈 , ,prop〉∈s

prop.seq+ |{e : e = 〈 , , bowout〉 ∈ s}| (3)

V. CASE STUDY ON THE RIPPLE XRP LEDGER

Our case study on the Ripple XRP Ledger tests the Ripple

source code to search for concurrency bugs in the RCA

consensus implementation. It aims to evaluate:

I The effectiveness of random concurrency testing methods
on the production implementation of Ripple XRP Ledger

II The effectiveness of guiding random test case generation
using evolutionary algorithms toward the executions with
consensus violations

III The comparison of guiding random test case generation
using time fitness and proposal fitness functions.

We evaluate the performances of the concurrency testing

methods by running them on three different versions of the

Ripple source code that we seeded with bugs.

First, we tested each version using two random concurrency

testing methods:

• RandomDelay: that delays the delivery of the in-flight

messages for random amounts of time. The maximum de-

lay in delay scheduling is 4000 ms. This delay allows the

network to make progress while providing the scheduler

with a large enough window to reorder events.

• RandomPriority: that assigns random priorities to the

messages and executes them in their priority order.

Then, we applied our evolutionary test generation algorithm

in Section IV-B to guide executions of RandomDelay using

either of the two fitness functions:

• T imeFitness: that directs the test cases towards the

executions that take more time to complete.

• ProposalF itness: that directs the test cases towards

schedules with higher maximum proposal sequences.
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A. Experimental Setup

We tested the Ripple software v.1.7.22 on a private peer-to-

peer network. The network consists of five Ripple server nodes

in docker containers, where each node has all other nodes in

its UNL. We performed the experiments on virtual machines

with 2 Intel Xeon vCPU’s @2.6GHz and 4GB memory.

As the test harness, we concurrently submit the following

four transactions to the Ripple network: Tx1 = {1, 1, 2, 80},

Tx2 = {2, 1, 3, 80}, Tx3 = {3, 1, 3, 80}, Tx4 = {4, 1, 2, 80},

where a transaction is represented by the transaction id, source

account id, destination account id, and transfer amount.

The transactions operate on three XRP accounts. Account

1 has a starting balance of 80 XRP and attempts to spend its

balance four times (twice to Account 2 and twice to Account

3). We submit the transactions to different Ripple server nodes

simultaneously 2000 ms after the start of the test execution.

A test case consists of submitting transactions to the network

and waiting for these transactions to be validated.

We tested three versions of the Ripple source code, two of

which we seeded bugs that expose only under some delivery

orderings on the protocol messages:

B1 (with a seeded bug in the processing of proposal
messages): A modified version of the Ripple source code

in which the nodes do not check the monotonicity of

the sequence number carried in proposal messages from

other nodes. This allows an older proposal to override a

more recent one, enabling nodes to declare consensus on

different transaction sets more easily, which violates the

safety property of the agreement.

B2 (with a seeded bug in the validation threshold val-
ues): A modified version of the Ripple source code in

which the nodes validate proposals when they reach a

quorum threshold of 40% agreement in the UNL instead

of 80%. This can result in two nodes validating two

different ledgers, which violates the safety property of

the agreement.

B3 (the original source code): The unmodified version of

the Ripple source code. Our tests detected a previously

unknown bug that violates the liveness property of termi-

nation as explained in Section V-E.

B. Correctness Specification

After running each test case, we check whether the execu-

tion adhered to the consensus properties given in Section III-D.

We check the following properties for RCA:

Termination: A violation of a liveness property, such as

termination, can be identified by an infinite execution that does

not satisfy the property. In our evaluation, we check bounded
termination, which is violated if execution takes more time

than a predetermined upper bound.

We determined the upper bound on the maximum execution

time for a test case based on the following parameters of RCA:

• ledgerIDLE INTERVAL = 15 sec: The maximum dura-

tion a ledger may remain idle before closing

2https://github.com/ripple/rippled/releases/tag/1.7.2

• ledgerMAX CONSENSUS = 10 sec: The maximum du-

ration to spend pausing for laggards

• proposeFRESHNESS = 20 sec: How long a proposal is

considered fresh

• validationFRESHNESS = 20 sec: How long a validation

is considered fresh

Summing up the parameters, we set the upper bound to

65 seconds. We mark an execution as a violation of bounded

termination if it requires more time than that. Under normal

circumstances, RCA validates a ledger every four or five

seconds, which is significantly faster than our upper bound.

Validity: We mark an execution as a violation of validity if:

1) A node declares consensus on a transaction set containing

a transaction that was never proposed by any node in that

consensus round, or

2) A node sends a validation message for a ledger that was

not constructed by any node, or

3) During ledger switching, a node switches to a ledger

chain that is not supported by any node

Integrity: We mark an execution as a violation of integrity if:

1) In one consensus round, a node declares consensus on

the transaction set twice, or

2) A node sends a validation message for a ledger with

a sequence number for which it has already sent a

validation.

Agreement: We mark an execution as a violation if:

1) Two nodes declare consensus on different transaction sets,

2) Two nodes validate two different ledgers.

C. Methods used for Performance Analysis

For each version of the Ripple source code, we executed

each search algorithm multiple times and recorded whether

one of the specifications reported in Section V-B was vio-

lated and the running time needed to achieve such violation.

Multiple runs allow us to account for the randomized nature

of the search algorithms as suggested by the existing guide-

lines [43]. Then, we compared the alternative algorithms w.r.t.

their success rate, i.e., the number of times (over n runs)

they uncover a concurrency bug. To statistically assess the

significance of the differences (if any), we applied Fisher’s

exact test with a significance level α = 0.05 [54]. We opted

for this statistical test because it is non-parametric, and it is

well-suited to test dichotomous distributions [54], i.e., whether

a bug is detected or not in each independent run in our context.

We complemented our analysis with the odds ratio [55] (OR)

to measure the magnitude of the differences (effect size).

OR=1 indicates that the two algorithms in the comparison

have the same success rate. Instead, OR>1 indicates that the

first algorithms in the comparison achieved a larger success

rate, while OR<1 indicates the opposite.

To deeper understand the performances of the different test-

ing approaches, we also analyze their capability in detecting

concurrency bugs in as little search budget as possible. While

the success rate measures the algorithm performance only at

the end of the search budget, we also want to analyze how
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RandomPriority RandomDelay

B1 1 10
B2 0 3
B3 0 7

TABLE II: The number of runs that discover bugs

quickly the algorithms assessed in this study can find each

bug. To this aim, we compare the different algorithms w.r.t.

the average time (among n runs) needed to uncover each bug

(efficiency). To statistically assess the efficiency results, we

applied the Wilcoxon rank sum test with a significance level

α = 0.05 [54] and the Vargha-Delaney (Â12). The former

test is a non-parametric test to assess whether two algorithms

in the comparison statistically differ in terms of efficiency

(significance test). The Vargha-Delaney statistics complement

the analysis by assessing the effect size. Â12 >0.50 indicates

that the first algorithm in the comparison is more efficient than

the second one; Â12 <0.50 means that the first algorithm in the

comparison is less efficient than the second one; Â12 =0.50

indicates that the two algorithms are equivalent.

For our analysis, we opted for non-parametric tests since

they do not make any normality assumption for the distribu-

tions (i.e., success rate or efficiency) being compared.

D. Experimental Results

1) Effectiveness of random concurrency testing algorithms
for detecting bugs in Ripple: Table II shows the results of test-

ing the three versions of the Ripple source code B1-B3 using

two random concurrency testing methods: RandomDelay and

RandomPriority. We collected the test results for each of

the algorithms using 10 runs, where each run tests the system

for a duration of one hour. The table lists the number of runs

out of 10 that detect bugs in the benchmarks.

In our evaluation, random concurrency testing using

RandomDelay outperformed RandomPriority in detecting

concurrency bugs. RandomPriority detected the seeded bug

in B1 in a single run and could not detect any bugs in the other

benchmarks. On the other hand, RandomDelay detected

the seeded bugs in B1 and B2 in more runs. Moreover, it

discovered a new bug that causes a violation of termination in

Ripple’s consensus. We explain the buggy execution scenario

in detail in Section V-E.

2) Effectiveness of guiding the test generation using the two
fitness functions: Table III shows the results of testing the

three versions of the Ripple source code B1-B3, guiding the

test generation with time fitness, proposal fitness, or without

any guidance. We collected the test results for each of the

algorithms using 30 runs, where each run tests the system for

a duration of one hour. The table lists the number of runs out

of 30 that detect bugs in the benchmarks.

Our evaluation shows that the evolutionary algorithm ef-

fectively guides the test generation toward buggy executions.

The algorithm could detect both bugs seeded in benchmarks

B1 and B2 and the new liveness bug in B3. We can explain

the difference in the bug detection rates in B1 and B2 by

T imeFitness ProposalF itness RandomDelay

B1 30 30 30
B2 21 17 10
B3 23 16 20

TABLE III: The number of runs that discover bugs using

different fitness functions compared to random search

Success rate
Random Time Proposal

p-value OR p-value OR p-value OR

B2
Time 0.01* 4.54 - - 0.42 1,77
Proposal 0.12 2.57 0.42 0.57 - -

B3
Time 0.57 1.63 - - 0.10 2.82
Proposal 0.43 0.58 0.10 0.35 - -

TABLE IV: p-values and odds ratios of the success rate.

A row contains the comparison of that row’s configuration

to each column’s configuration. * indicates a statistically

significant p-value

the characteristics of the concurrency bugs seeded in these

benchmarks. The bug in B1 violates the agreement property

(1) reaching consensus on two different transaction sets. The

bug in B2 violates the property of agreement (2) as it validates

two different ledgers. Validating two different ledgers should

only be possible when two nodes apply different transaction

sets to their ledgers, making B2 a subset of B1, where breaking

agreement(1) is made even easier due to the inserted bug.

3) Comparison of the two fitness functions: We compare

the performances of the two different versions of the evo-

lutionary algorithm with different fitness functions against

independently random testing by evaluating (1) the success

rate of detecting the bug and (2) the time to detect the bug.

Tables IV and V show the success rate and efficiency of

using each fitness function and random search, respectively.

Since we found the concurrency bug in benchmark B1 in all

runs for all configurations, we compare the performances for

detecting bugs in B2 and B3.

We compare the performance of time fitness with proposal

fitness and random search, and proposal fitness with time

fitness and random search. We create a contingency table for

each comparison and use Fisher’s exact test to calculate the

p-values and odds ratios.

Table IV shows the resulting p-values and odds ratios. The

evolutionary test case generation using time fitness signifi-

cantly outperforms random testing on benchmark B2 with p-

value = 0.01 < α and OR = 4.54. It performs no worse than

independently random test generation on B1 and B3. Using

proposal fitness, on the other hand, evolutionary test generation

shows only marginal improvement in success rate over random

testing on B2. However, the statistical significance analysis

does not draw clear conclusions about the proposal fitness.

An observation from Table IV is the difference in success

rates for the detection of the bugs in the benchmarks. While

the evolutionary test case generation guided by the fitness

functions outperforms random search (significantly with time
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Fig. 6: The buggy execution triggering the liveness violation

fitness) for B2, this is not the case for B3. This can be

explained by the characteristics of the concurrency bug in

B3 (Section V-E), we detected in the tests that apply large

delays on GetLedger and LedgerData messages. The bug

is only triggered when the total delay of both message types

is more than 5250 ms. The number of generations it takes

for an evolutionary algorithm to reach the required delays

largely depends on the initial population. If most individuals

in the initial population have small delays for these message

types, the evolutionary algorithm requires a higher number of

generations to increase delays to the required values.

Efficiency
Random Time Proposal

p-value A12 p-value A12 p-value A12

B1
Time 0.42 0.56 - - 0.73 0.47
Proposal 0.30 0.58 0.73 0.53 - -

B2
Time 0.49 0.55 - - 0.48 0.57
Proposal 0.67 0.55 0.48 0.43 - -

B3
Time 0.86 0.52 - - 0.40 0.58
Proposal 0.44 0.42 0.40 0.42 - -

TABLE V: p-values and A12 effect sizes of the efficiency.

A row contains the comparison of that row’s configuration

to each column’s configuration

We also compared the algorithms in terms of the time to

reach the maximum test effectiveness [30], [56], which is

the bug detection in our case. Table V shows the resulting

p-values of the Wilcoxon tests and the A12 statistics. Our

results do not show any significant difference between the

different algorithms’ time to bug detection. This could be due

to the search budget of one hour combined with the expensive

fitness evaluations (≈ 20 seconds). Each run only allows for

approximately 180 evaluations, which could be improved by

increasing the search budget.

E. A New Concurrency Bug Discovered in RCA

In our case study, we discovered a previously unknown

production bug during our evaluation using delay scheduling.

The bug causes the nodes to get stuck in the establish

phase of the protocol indefinitely, violating the termination

of consensus. Our blackbox tests detected the buggy execution

without any prior information about the implementation details

of the system.

Figure 6 shows a simplified version of the buggy execution

with two nodes and a client. The nodes start in the open

phase. The client sends two conflicting transactions, tx1 and

tx2, that attempt to double-spend. tx1 (in blue) is sent to

p1 and tx2 (in yellow) is sent to p2. The nodes receive

conflicting transactions from each other but do not include

them in their open ledger as they have already included the

other transaction. The nodes then proceed to the establish

phase and send their proposals. On receipt of the proposals,

they discover that they do not have the transaction included

in them. In turn, they create a TransactionAcquire
(TA) object, which periodically broadcasts GetLedger (GL)

messages in an attempt to acquire the missing transaction.

Nodes receiving the GL message that have the referenced

transaction will reply with a LedgerData (LD) message

containing the transaction. Normally, on receipt of the LD

message, the transaction will be acquired, disputes can be

created, and consensus proceeds as normal. However, a TA

object lives only for 5250 ms, after which it times out.

The problem arises when the LD message for the transaction

arrives after the TA object has timed out. The LD message is

ignored, and the node cannot acquire the transaction. Sub-

sequent proposals containing the transaction cannot be used

to create disputes. The nodes resend their proposals every 12

seconds as a way to keep their proposal fresh but cannot make

forward progress. The nodes are stuck indefinitely.

We have reported the bug to Ripple’s development team,

and it is currently under investigation.

VI. THREATS TO VALIDITY

Internal validity. The main potential threats to the internal

validity are related to (1) using randomized algorithms and (2)

measuring efficiency in terms of running time. To mitigate the

first threat, we ran each randomized algorithm multiple times

and drew our conclusions based on the overall distributions

obtained across the different runs. We also applied sound

statistical tests, namely the Fisher’s exact test [54], the odds

ration [55], the Wilcoxon rank-sum test [57], and the Vargha-

Delaney (Â12) statistics. Hence, we carefully followed the

existing guidelines regarding assessing randomized algorithms.

To alleviate the second threat, we implemented all algo-

rithms and fitness functions in the same tool. Besides, we run

all algorithms on the same machine to avoid potential bias that

can manifest when using different environments.

External validity. The testing approaches described in this

paper have been applied to a single (albeit large-scale) con-

sensus algorithm developed by a single company (Ripple).

Therefore, our conclusions w.r.t to the performance of evolu-

tionary testing and different fitness functions might be specific

to Ripple’s code. Further research is needed to validate our

results for other consensus algorithms developed and designed

by other (research or industrial) entities.

VII. CONCLUSION AND FUTURE WORK

In this paper, we explored the concurrency behaviors of

the Ripple XRP Ledger and uncovered a previously unknown

concurrency bug in the Ripple production code. Our case

study shows that randomized concurrency testing methods
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successfully discover real-world concurrency bugs in large-

scale systems. We further designed an evolutionary search-

based concurrency testing algorithm to guide the test genera-

tion toward problematic executions. We proposed two fitness

functions that direct the test generation towards the executions

that take a long time or a long sequence of proposals to make

a decision. In our evaluation, the time-based fitness function

performed better at detecting concurrency bugs.

Having demonstrated the applicability and effectiveness of

evolutionary search-based test generation for concurrency ex-

ploration, our case study points out several research directions.

The impact of the schedule representation. Test case repre-

sentations provide different search performances depending on

their locality, redundancy, and scaling [58], [59]. We presented

two representations for delay and priority-based test genera-

tion. Future work can evaluate a wider set of representations.

The impact of variation operations. The selection of varia-

tion operators and parameters affects the search performance.

Future work can explore a wider set of operations.

The impact of the fitness function. Fitness functions drive

the test execution toward specific system behavior, and hence

different fitness functions can be useful for searching for

different goals. We presented two fitness functions that direct

test cases toward longer execution time or higher proposal

sequences. While these functions successfully guided the

search toward termination violations, future work can analyze

other fitness functions targeted at different types of violations.

Furthermore, these fitness functions can be considered in

combination rather than as alternatives using multi- and many-

objective optimization algorithms, e.g., MOEA/D [60], AGE-

MOEA [61], [62], or MOSA [30], [34]. We could also consider

resource usage [63] as an additional factor to take into account

when generating test cases also for regression purposes.

Application to other systems. While this paper presents

a case study on Ripple, the proposed method is applicable

for testing the consensus implementations in other distributed

systems and blockchains that use a BFT-style consensus mech-

anism. Future work can explore the performance of different

representations and fitness functions for testing other systems.
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