
CRDTs for Approximate Membership Queries
Junbo Xiong

j.xiong-6@student.tudelft.nl
Delft University of Technology

Delft, The Netherlands

Ege Berkay Gulcan
e.b.gulcan@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Burcu Kulahcioglu Ozkan
b.ozkan@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Abstract
Probabilistic data structures are used in applications that
manage large datasets due to their time and space efficiency.
These applications can accommodate approximate results
from probabilistic data structures and replicated systems that
use them can take advantage of the efficiency gained from
weaker synchronization and consistency among replicas.

In this paper, we propose conflict-free replicated data types
(CRDTs) for probabilistic data structures with approximate
membership queries. Specifically, we introduce Conflict-Free
Replicated Bloom Filters andConflict-Free Replicated Cuckoo
Filters, which are the conflict-free versions of traditional
Bloom and Cuckoo filters. We provide implementations of
these data structures in an open-source repository and present
an evaluation of the approximate query results across various
workload and replica synchronization configurations.

CCS Concepts: • Theory of computation→ Distributed
algorithms; • Information systems→ Distributed stor-
age; • Software and its engineering→ Consistency.

Keywords: conflict-free replicated data types, replica consis-
tency, probabilistic data structures, approximatemembership

1 Introduction
Probabilistic data structures are fast and space-efficient data
structures that have gained popularity for big data applica-
tions with large data sets [11]. Unlike regular data structures,
probabilistic data structures return approximated answers
with some estimation of possible errors. For instance, a prob-
abilistic set can offer approximate membership queries, re-
turning either “possibly in the set” or “definitely not in the
set” when checking if an element is contained within it, with
certain bounds on the false positive rate.

These structures offer an efficient solution for applications
that keep vast amounts of data, need fast processing time, and
can tolerate approximate answers. One of the most popular
examples of such data structures, Bloom filters [4], are used

https://doi.org/10.1145/3721473.3722146

in many systems to identify malicious URLs, used in routing
tables [28], prefix matching of IP addresses [8] and efficient
network state management [24].

Besides allowing for approximate answers, many use cases
for probabilistic data structures often do not demand strong
synchronization of their copies. Consider an example repli-
cated system that maintains an approximate membership
data structure of blocklisted email addresses to identify ma-
licious addresses. Such a system can reduce synchroniza-
tion costs by permitting concurrent updates across different
copies of the probabilistic data structure instead of synchro-
nizing all copies after each element is inserted.

Conflict-free Replicated Data Types (CRDTs) [23] are well-
known data structures that support concurrent update oper-
ations. CRDTs are equipped with conflict resolution mech-
anisms that provide automated merging of the concurrent
updateswithout involving global coordination and guarantee
convergence of the replica states. CRDTs have been designed
for many data structures including registers [23], counters
[23], sets [3, 23], maps [7, 21], lists [20, 23, 26], graphs [23],
JSON documents [15], priority queues [29].
In this work, we propose CRDTs for probabilistic data

structureswith approximatemembership queries.We present
two new CRDTs for grow-only probabilistic data structures:
the Conflict-free Replicated Bloom Filter (CRBF) and grow-
only Conflict-free Replicated Cuckoo Filter (CRCF), which
are the conflict-free versions of the Bloom filter [4] and
Cuckoo filter [9]. We provide their specifications following
the state-based approach for replicated data types [23] and
formulate the error estimation of their membership queries
based on the error estimation of their regular versions.
We verified the correctness of our CRDT specifications

using VeriFx [19] and provided their implementations in
an open-source library [25]. Our evaluation of CRBFs and
CRCFs on different workload and replica synchronization
configurations shows that the empirical false positive rates
of the conflict-free versions of the data structures align well
with their theoretically estimated values and do not signif-
icantly differ from their regular versions, especially when
the replicas synchronize frequently.

2 Data Structures for Approximate Queries
2.1 Bloom Filter
Bloom filter [4] is the most well-known data structure for
approximate membership queries. It consists of a bit array

56

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PaPoC ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1558-7/2025/03

https://orcid.org/0000-0003-1237-0829
https://orcid.org/0000-0002-7038-165X
https://doi.org/10.1145/3721473.3722146
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3721473.3722146&domain=pdf&date_stamp=2025-04-02

PaPoC ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Input: Filter 𝐵 with 𝑘 hash functions {ℎ1, . . . , ℎ𝑘 }
Input: Element 𝑒 ∈ 𝐷

1 proc add(B, e)
2 for 𝑖 ∈ {1, . . . , 𝑘 } do 𝐵 [ℎ𝑖 (𝑒)] ← 1

3 proc contains(B, e)
4 for 𝑖 ∈ {1, . . . , 𝑘 } do
5 if 𝐵 [ℎ𝑖 (𝑒)] ≠ 1 then return false
6 return true

Algorithm 1:Adding an element and querying the mem-
bership of an element in a Bloom filter.

of𝑚 bits and 𝑘 independent hash functions (ℎ1, ℎ2, . . . , ℎ𝑘).
Initially, all the indices of the bit array are set to 0.

A Bloom filter supports operations for adding an element
and querying the membership of an element. Algorithm 1
provides the procedures for these operations. An element
𝑒 is added to the filter by computing its hash using all the
hash functions (ℎ1, ℎ2, . . . , ℎ𝑘) to obtain 𝑘 index values with
{ℎ𝑖 (𝑒) mod 𝑚}𝑘𝑖=1 and setting these indices of the filter to 1.
Querying the membership of an element checks the indices
generated by the hash functions. If all the indices generated
by the hash functions are set to 1, then the element is possibly
contained in the set. Otherwise, it is not contained in the set.
As the bit at an index may be set by multiple elements

due to hash collisions, a Bloom filter can return false posi-
tive membership results. The probability of getting a false
positive membership is given by Equation 1, where 𝑛 is the
expected number of elements in the filter [4].

𝜀 =

(
1 −

(
1 − 1

𝑚

)𝑘𝑛)𝑘
≈ (1 − 𝑒−𝑘𝑛/𝑚)𝑘 (1)

2.2 Cuckoo Filter
Cuckoo filter [9] is an alternative to Bloom filter that uses
Cuckoo hash tables [18] with an optimization called partial-
key cuckoo hashing, which allows storing only a portion of
the key, i.e., its fingerprint; instead of the entire key. The
Cuckoo filter improves the Bloom filter by providing better
false positive rates while maintaining space efficiency and
allowing the removal of elements. In this paper, we present
a conflict-free data type for the grow-only Cuckoo filter and
provide element insertion and querying operations.
A Cuckoo filter consists of a Cuckoo hash table with m

buckets each storing up to b values, a fingerprint functionℎ𝐹 ,
and a hash function ℎ. Algorithm 2 provides the addition and
membership checking of an element. An element 𝑒 is inserted
into the filter by computing its fingerprint 𝑓 ← ℎ𝐹 (𝑒), and its
two candidate buckets 𝑖 ← ℎ(𝑒) and 𝑗 ← 𝑖 ⊕ ℎ(𝑓), where ⊕
denotes the bit-wise XOR operation. The element is inserted
into the bucket at 𝑖 if it is not full (line 4) or the alternative
bucket at 𝑗 if not full (line 6). If both are full, it randomly
chooses one of those buckets (line 7) to store 𝑒 there. It
displaces the element from that bucket to its alternative
candidate bucket, which can be computed without using the

Junbo Xiong, Ege Berkay Gulcan, and Burcu Kulahcioglu Ozkan

Input: Filter 𝐶 with fingerprinting ℎ 𝐹 and hash function ℎ
Input: Element 𝑒 ∈ 𝐷

1 proc add(C, e)
2 𝑓 ← ℎ𝐹 (𝑒) , 𝑖 ← ℎ (𝑒) , 𝑗 ← 𝑖 ⊕ ℎ (𝑓)
3 if C[i] has empty space then
4 𝐶 [𝑖] .𝑎𝑑𝑑 (f) return true
5 else if 𝐶 [𝑗] has empty space then
6 𝐶 [𝑗] .𝑎𝑑𝑑 (𝑓) return true
7 𝑘 ← randomChoose ({𝑖, 𝑗 })
8 for 𝑖 ∈ {0, . . . ,MaxIter} do
9 𝑥 ← randomChoose (𝐶 [𝑘])

// swap 𝑓 and the fingerprint stored in 𝑥

10 𝑘 ← 𝑘 ⊕ ℎ (𝑓)
11 if 𝐶 [𝑘] has empty space then
12 𝐶 [𝑘] .𝑎𝑑𝑑 (𝑓) return true
13 return false

14 proc contains(C, e)
15 𝑓 ← ℎ𝐹 (𝑒) , 𝑖 ← ℎ (𝑒) , 𝑗 ← 𝑖 ⊕ ℎ (𝑓)
16 if 𝑓 ∈ 𝐶 [𝑖] or 𝑓 ∈ 𝐶 [𝑗] then return true
17 return false

Algorithm 2:Adding an element and querying the mem-
bership of an element in a Cuckoo filter.

original element but only the stored fingerprint (line 11). The
displacement repeats until an empty slot (lines 12-13) or a
maximum number of iterations is reached (line 8). If there
are no empty buckets, the insertion fails (line 14).
The membership query in a Cuckoo filter is similar to

the query of a Bloom filter. A positive result indicates the
existence of an entry with fingerprint 𝑓 in either bucket
𝑖 or 𝑗 . Like Bloom filters, Cuckoo filters suffer from false
positives, with the probability given in Equation 2, where 𝑙
is the length of a fingerprint in bits, and 𝑐 is the bucket size.

𝜀 = 1 −
(
1 − 1

2𝑙

)2𝑐
≈ 2𝑐

2𝑙
(2)

3 Conflict-free Data Structures for
Approximate Membership

We present two CRDTs for probabilistic data structures for
approximate membership queries: Conflict-free Replicated
Bloom Filter (CRBF) and Conflict-free Replicated Cuckoo
Filter (CRCF), following the state-based CRDT approach [22].

CRDT Specifications. The specifications define the state
representation and the initial state of the CRDT, query op-
erations that do not modify the state, and modification op-
erations that update the local state of the source replica,
where the updated state is broadcasted to other replicas,
asynchronously. For CRBF and CRCF, the query and modifi-
cation operations are, respectively, contains, which checks
approximate membership, and add, which adds an element.
For the convergence of replica states, the specification

also defines the functions compare and merge. The compare
function defines a partial order on the replica states, which
returns true if the state of the current replica is partially less
than or equal to other and false otherwise. The function
merge yields the least upper bound of two states following the

57

CRDTs for Approximate MembershipQueries PaPoC ’25, March 30–April 3, 2025, Rotterdam, Netherlands

partial order. In practice, merge is called when a message is
received tomerge the received state with the replica’s current
state. State-based CRDTs guarantee convergence if themerge
function is idempotent, commutative, and associative [22].

Overview of CRBF and CRCF. Our specifications repre-
sent the filter states using grow-only sets and use grow-only
set CRDTs [22]. This representation of the CRBF states offers
query, add, and merge operations following the set CRDTs.
The specification of CRCF is more involved with addi-

tional challenges on the element insertion and state merging.
Unlike a Bloom filter, which always allows for the addition
of elements, a Cuckoo filter rejects the addition of an el-
ement if its corresponding bucket is full. This restriction
creates difficulties in replicated systems where updates are
non-coordinated. In such scenarios, two concurrent addition
operations may both succeed, even though only one would
succeed in a sequential setting. One approach to address this
challenge is to introduce reservations or implement stronger
synchronization for certain operations [1, 2, 17] which are
used to ensure critical safety guarantees. However, since
the bucket specifications of probabilistic data types are not
safety-critical but are mainly used for error estimation, we
adopt an alternative strategy. We relax the restriction on
bucket size, allowing an element to be added as long as the
corresponding bucket in the local replica is not full. Moreover,
we retain all elements added in the replicas after the merge
operation. We mitigate the effects of overflowing buckets
during element insertion, as explained in Section 3.2.

Another challenge arises from statemerging of the Cuckoo
filters, as a naïve approach that is suitable for merging the
set-based representations of Bloom filters could lead to re-
dundant entries in Cuckoo filters. This redundancy increases
the load factor of the Cuckoo filter, resulting in higher false
positive rates. To address this issue, we propose a more so-
phisticated merging method that takes into account the al-
ternate buckets of entries in the Cuckoo table while merging
two filters and, thus, prevents duplicate entries.

3.1 Conflict-free Replicated Bloom Filter (CRBF)
CRBF represents a Bloom filter that consists of an𝑚-bit bit
array with a grow-only set by modeling the bit array as a set
of active indexes. The possible states of a CRBF are partially
ordered by the set inclusion relation. The initial state of a
CRBF is an empty set as all its bits are initially set to 0.

Data Type Operations. Figure 3 provides the specifica-
tion of the CRBF. The query and update operations of the
CRBF follow from the operations of the Bloom filter. Query-
ing the membership of an element computes a set of indices
by hashing 𝑒 using the functions {ℎ𝑖 (𝑒)}𝑘𝑖=1. If the computed
set of indices is the subset of the current state of the filter,
then 𝑒 is considered to be contained by the filter. Similarly,
adding an element 𝑒 to the filter updates its state by taking

payload 𝑆 : set⟨index⟩
initial 𝑆 ← ∅
query contains(𝑒):

return {ℎ𝑖 (𝑒) }𝑘𝑖=1 ⊆ 𝑆

update add(𝑒):
return {ℎ𝑖 (𝑒) }𝑘𝑖=1 ∪ 𝑆

compare (𝑆 ′):
return 𝑆 ⊆ 𝑆 ′

merge (𝑆 ′):
return 𝑆 ∪ 𝑆 ′

Specification 3: Conflict-free Bloom filter

∅ ∅
𝑆 𝑆 ′

{1, 2} {2, 4}

{1, 2, 4} {1, 2, 4}
contains(𝑒1) = true
contains(𝑒2) = true

contains(𝑒1) = true
contains(𝑒2) = true

add(𝑒1) add(𝑒2)

merge(𝑆 ′) merge(𝑆)

Figure 1. An example of merging two Bloom filter states.

the union of the current filter state and the set of indices
computed by hashing 𝑒 using the hash functions.

State Convergence. The states of two CRBFs are merged
simply by taking the set union of their states. Figure 1 illus-
trates an example of adding two elements 𝑒1 and 𝑒2 into two
CRBFs with two hash functions. In the example, 𝑒1 is hashed
to {1, 2} and 𝑒2 to {2, 4}. The merged state contains all ac-
tive indices introduced by 𝑒1 and 𝑒2. Hence, the membership
queries for both elements yield true.

Probabilistic Characteristics. The false positive rate of
the CRBFs does not differ from the regular Bloom filters
given in Equation 1, where 𝑚 is the number of bits, 𝑘 is
the number of hash functions, and 𝑛 is the total number of
elements added to the replicated Bloom filter.

3.2 Conflict-Free Replicated Cuckoo Filter (CRCF)
Similar to the regular Cuckoo filter, the CRCF holds a Cuckoo
hash table that we represent as a set of pairs of integers in
the specification. The pair (𝑖, 𝑓) denotes an entry of finger-
print 𝑓 in the 𝑖-th bucket. The algorithms for calculating
the fingerprint and bucket indexes are all identical to the
description in the Cuckoo filter algorithm in Section 2.2.

A major difference between CRCF and the regular Cuckoo
filters is that while the capacity 𝑐 of a bucket is a hard limit in
the standard cuckoo filter, it becomes a soft one for the CRCF.
This is because CRCF allows the replicas to add entries if
their buckets are not full and keeps all inserted entries in
the filter after a merge operation. We consider a bucket full
if it contains exactly 𝑐 entries full and overflowing if more
entries are inserted.

Data Type Operations. Specification 4 describes the oper-
ations of a CRCF. The membership query follows the regular
Cuckoo filters, i.e., it returns true if either of the pairs (𝑖, 𝑓)

58

PaPoC ’25, March 30–April 3, 2025, Rotterdam, Netherlands Junbo Xiong, Ege Berkay Gulcan, and Burcu Kulahcioglu Ozkan

payload 𝑆 : set⟨index × fingerprint⟩
initial 𝑆 ← ∅
query contains(𝑒):

𝑓 ← ℎ𝐹 (𝑒) , 𝑖 ← ℎ𝐼 (𝑒) , 𝑗 ← altIndexOf (𝑖, 𝑓)
return (𝑖, 𝑓) ∈ 𝑆 ∨ (𝑗, 𝑓) ∈ 𝑆

update add(𝑒):
if contains(𝑒) then return 𝑆

return cuckooInsert (𝑆, 𝑒)
compare (𝑆 ′):

𝐷 ← {(altIndexOf (𝑖, 𝑓), 𝑓) | (𝑖, 𝑓) ∈ 𝑆 } // dual

𝐷 ′ ← {(altIndexOf (𝑖, 𝑓), 𝑓) | (𝑖, 𝑓) ∈ 𝑆 ′ }
return (𝑆 ∪𝐷) ⊆ (𝑆 ′ ∪𝐷 ′)

merge (𝑆 ′):
𝐷 ← {(altIndexOf (𝑖, 𝑓), 𝑓) | (𝑖, 𝑓) ∈ 𝑆 }
return 𝑆 ∪ (𝑆 ′ \𝐷)

Specification 4: Conflict-free Cuckoo Filter

and (𝑗, 𝑓) is contained in the set, where 𝑓 is the fingerprint,
𝑖 is the bucket index, and 𝑗 = altIndexOf (𝑖, 𝑓) is the alterna-
tive bucket index.

As CRCF relaxes the Cuckoo filter’s bucket capacity con-
straint, we extend the procedure of adding elements with
a balancing function. Algorithm 5 shows the procedure for
inserting an element 𝑒 into a CRCF with state 𝑆 . Similar to
the regular Cuckoo filters, it checks both candidate buckets
for available slots (line 3). If only one of the buckets has a slot,
it inserts the entry in that bucket (lines 4-5). If both buck-
ets are available, it chooses a random bucket to insert the
element (lines 6-7). The steps in cuckooInsertImpl move en-
tries to their alternative buckets to accommodate the newly
inserted one, up to𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 times. If the current bucket is
not full, the entry 𝑓 is inserted in that bucket (lines 12-13).
If it is full, the entry replaces a random one in the bucket
(lines 14-16), and then the victim entry 𝑓 ′ is inserted into its
alternative bucket (lines 17-18). If the bucket is overflowing,
the algorithm first tries “smoothing out” the excess entries
by moving them (lines 19-23). Then, the remaining quota of
iterations are spent on inserting the original entry 𝑓 (line
24). The procedure cuckooInsertImpl aborts if it exceeds the
maximum number of attempts as in a regular Cuckoo filter.
It ensures no additional overflowing bucket is introduced
due to local adds and redistributes the entries on the fly to
rebalance the cuckoo hash table.

State Convergence. A straightforward approach to define
the merge operation is directly using set union: 𝑆 ⊔ 𝑆 ′ =
𝑆 ∪ 𝑆 ′. While being theoretically correct, the naïve solution
leads to duplicate entries corresponding to the same element.
Figure 2 demonstrates such an example with two replica

states 𝑆 and 𝑆 ′. Consider the elements 𝑒1, 𝑒2, 𝑒3 having candi-
date buckets {1, 9}, {2, 8}, and {3, 7}, respectively. One of the
replicas inserts 𝑒1 and 𝑒2, and another one inserts 𝑒1 and 𝑒3,
possibly resulting in the replica states in Figure 2a. The naïve
merge operation takes the union of all (index, fingerprint)
pairs, which keeps duplicated entries for some elements. Du-
plicate entries fill in more buckets, increasing the filter’s load
factor and, hence, false positive rates.

1 proc cuckooInsert(𝑆 , 𝑒)
2 𝑓 ← ℎ𝐹 (𝑒) , 𝑖 ← ℎ𝐼 (𝑒) , 𝑗 ← altIndexOf (𝑖, 𝑓)
3 𝐵1 ← {(𝑖, 𝑓 ′) ∈ 𝑆 }, 𝐵2 ← {(𝑗, 𝑓 ′) ∈ 𝑆 }
4 if |𝐵1 | < 𝑐 ∧ |𝐵2 | ≥ 𝑐 then index ← 𝑖

5 else if |𝐵2 | < 𝑐 ∧ |𝐵1 | ≥ 𝑐 then index ← 𝑖2
6 else index ← randomChoose ({𝑖, 𝑗 })
7 (𝑆 ′, _) ← cuckooInsertImpl (𝑆, index, 𝑓 , maxIters)
8 return S’
9 proc cuckooInsertImpl(𝑆 , 𝑖 , 𝑓 , n)
10 if n < 0 then throw “max #iterations is reached”
11 𝐵 ← { 𝑓 ′ | (𝑖, 𝑓 ′) ∈ 𝑆 }
12 if |𝐵 | < 𝑐 then // Insert into an available slot

13 return (𝑆 ∪ { (𝑖, 𝑓) }, 𝑛)
14 else if |𝐵 | = 𝑐 then // Move an entry to its alt. bucket

15 𝑓 ′ ← randomChoose (𝐵)
16 𝑆 ′ ← 𝑆 \ { (𝑖, 𝑓 ′) } ∪ { (𝑖, 𝑓) }
17 𝑗 ← altIndexOf (𝑖, 𝑓 ′)
18 return cuckooInsertImpl (𝑆 ′, 𝑗, 𝑓 ′, 𝑛 − 1)
19 else // Evict excess entries in the bucket

20 𝑓 ′ ← randomChoose (𝐵)
21 𝑆 ′ ← 𝑆 \ { (𝑖, 𝑓 ′) }
22 𝑗 ← altIndexOf (𝑖, 𝑓 ′)
23 (𝑆 ′′, 𝑛′′) ← cuckooInsertImpl (𝑆 ′, 𝑗, 𝑓 ′, 𝑛 − 1)
24 return cuckooInsertImpl (𝑆 ′′, 𝑖, 𝑓 , 𝑛′′)

Algorithm 5: Inserting an element 𝑒 into a CRCF

We define a merge operation that eliminates duplicate
entries while guaranteeing convergence. The operation uses
the fact that in a Cuckoo table, the same fingerprint appear-
ing in either candidate bucket indicates the existence of the
same element (ignoring hash collisions). That is, a Cuckoo
hash table state 𝑆 conceptually holds a larger set of entries.
This conceptual set 𝑈 comprises both the entries included
in 𝑆 and equivalent entries in their alternative buckets. We
call the latter the dual Cuckoo hash table 𝐷 of 𝑆 , given by:

𝐷 (𝑆) = {(altIndexOf (𝑖, 𝑓), 𝑓) | (𝑖, 𝑓) ∈ 𝑆}. (3)

Then, we have: 𝑈 (𝑆) = 𝑆 ∪ 𝐷 (𝑆). (4)
Therefore, the partial order of two CRCF states can be defined
based on the inclusion relation of their universe sets:

𝑆 ≤ 𝑆 ′ ⇔ 𝑈 (𝑆) ⊆ 𝑈 (𝑆 ′). (5)

Since a Cuckoo table conceptually includes the elements
in its dual table, when merging states, it only needs to retain
entries that are not covered by its dual table. Accordingly,
we define the merge function as:

𝑆 ⊔ 𝑆 ′ = 𝑆 ∪ (𝑆 ′ \ 𝐷 (𝑆)). (6)

Figure 2b illustrates the merge function. The replica with
state 𝑆 merges with 𝑆 ′ by first computing its dual Cuckoo
table 𝐷 and then inserting only the pairs from 𝑆 ′ into 𝑆 that
are not contained in𝐷 . The replicas reach an equivalent state
after they merge their states. The merged states contain all
three elements, avoiding duplication.

Probabilistic Characteristics. The false positive estima-
tion of CRCF follows from that of regular Cuckoo filters in
Equation 2, with a difference that the load factor of some
buckets in CRCF may exceed 100%. Therefore, we incorpo-
rate the average load factor, 𝛼 , into the formula. While in the

59

CRDTs for Approximate MembershipQueries PaPoC ’25, March 30–April 3, 2025, Rotterdam, Netherlands

{ (1, 𝑓1)⇒𝑒1 , (2, 𝑓2)⇒𝑒2 } { (3, 𝑓3)⇒𝑒3 , (9, 𝑓1)⇒𝑒1 }
𝑆 𝑆 ′

{ (1, 𝑓1)⇒𝑒1 , (2, 𝑓2)⇒𝑒2 , (3, 𝑓3)⇒𝑒3 , (9, 𝑓1)⇒𝑒1 }
𝑆 ∪ 𝑆 ′

contains(𝑒1) = true, contains(𝑒2) = true, contains(𝑒3) = true
∃ duplicated entries of 𝑒1

(a) The result of merge using plain set union of states contains duplicated entries.

{ (1, 𝑓1)⇒𝑒1 , (2, 𝑓2)⇒𝑒2 } { (3, 𝑓3)⇒𝑒3 , (9, 𝑓1)⇒𝑒1 }
𝑆 𝑆 ′

{ (9, 𝑓1)⇒𝑒1 ,
(8, 𝑓2)⇒𝑒2 }

{ (1, 𝑓1)⇒𝑒1 ,
(7, 𝑓3)⇒𝑒3 }

𝐷 𝐷 ′.

{ (3, 𝑓3)⇒𝑒3 } { (2, 𝑓2)⇒𝑒2 }𝑆 ′ \𝐷 𝑆 \𝐷 ′

{ (1, 𝑓1)⇒𝑒1 ,
(2, 𝑓2)⇒𝑒2 ,
(3, 𝑓3)⇒𝑒3 }

{ (2, 𝑓2)⇒𝑒2 ,
(3, 𝑓3)⇒𝑒3 ,
(9, 𝑓1)⇒𝑒1 }

𝑆 ∪ (𝑆 ′ \𝐷) 𝑆 ′ ∪ (𝑆 \𝐷 ′)

contains(𝑒1) = true
contains(𝑒2) = true
contains(𝑒3) = true

contains(𝑒1) = true
contains(𝑒2) = true
contains(𝑒3) = true

merge(𝑆 ′) merge(𝑆)

(b) The detailed procedure of merge using Equation 6. The merged states do not contain duplicated entries.

Figure 2. An example of merging two CRCFs using different merge operations. The fingerprint of element 𝑒𝑖 is denoted as
𝑓𝑖 . The indexes of candidate buckets are {1, 9} for 𝑒1, {2, 8} for 𝑒2, and {3, 7} for 𝑒3. The subscripts of the entries show the
elements they correspond to. All merged states are equivalent, containing all three elements. While the method in Figure 2a
results in duplicate entries for an element, the method in Figure 2b eliminates duplication.

regular filters, at most 2𝑐 entries are compared with a given
fingerprint, in CRCF, 2𝑐𝛼 slots are accessed per query on
average. Hence, the probability of false positives becomes:

𝜀 = 1 −
(
1 − 1

2𝑙

)2𝑐𝛼
≈ 2𝑐𝛼

2𝑙
(7)

3.3 Verification
Weverified the specifications of CRBF andCRCF using VeriFx
[19], which offers a Scala-like high-level programming lan-
guage for writing CRDT specifications and automatically ver-
ifying them. For simplicity of the verification, we use elemen-
tary hash functions in the verified specifications. Note that
this does not affect the correctness verification of the data
structures since the correctness of the Bloom and Cuckoo
filters does not depend on the used hash functions. The
analysis shows that both CRBF and CRCF achieve the com-
mutative, idempotent, and associative properties, verifying
the correctness of our specifications. We provide the VeriFx
specifications in our GitHub repository [25].

4 Implementation and Evaluation
4.1 Implementation
We implemented the CRDTs for approximate membership
queries as a Scala library of data structures and made it pub-
licly available [25]. Our implementation uses MurmurHash3
and FarmHash provided by the Google Guava [12] due to
their performance and low collision rate. For CRBF, these
two hash functions serve as the foundation for generating
a series of hash codes, following the optimization approach
by Kirsch and Mitzenmacher [14]. For CRCF, MurmurHash3
is used for index hashing, and FarmHash for fingerprinting.

4.2 Evaluation
We evaluated the CRBF and CRCF in the (i) empirical false
positive rates of their membership queries under different
workload distributions and synchronization frequencies and
(ii) space efficiency compared to regular set CRDTs inAkka [16].

Experimental Setup. We generated the workloads using
a similar setup to previous works [6, 9, 13] and used 128-
bit random integers generated by the standard library of
Java. We created filters capacity matching the quantity of
workload, used five hash functions for the Bloom filters, and

60

https://github.com/C6H5-NO2/probfilter

PaPoC ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

0.0280

0.0285

0.0290

0.0295

0.0300

0.0305

0.0310

0.0315

Sync Frequency (in #operations)

FP
R

Theor.
99-1
80-20
50-50

(a) CRBF

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

0.0280

0.0285

0.0290

0.0295

0.0300

0.0305

0.0310

0.0315

Sync Frequency (in #operations)

FP
R

Theor.
99-1
80-20
50-50

(b) CRCF

Figure 3. False positive rates of the data structures under
different workload and synchronization configurations

used a bucket of size 4 entries with an 8-bit fingerprint for
the Cuckoo filters. Cuckoo filters are all configured with
an iteration quota of 500 attempts, following the evaluation
setup in the original work [9]. We distributed the workload
among two replicas. We use 𝑑-(100 − 𝑑) split to label the
distribution scheme where one replica conducts 𝑑% of the
workload while the other does the rest.

False Positive Rate (FPR). We measured the empirical
FPR of the membership queries invoking 220 add operations
split among two replicas according to a particular workload
distribution and merging them every 103 to 107 operations,
with an additional merge at the end of the execution. We
used three workload distribution schemes with 50-50, 80-20,
and 99-1 splits. For reference, we also evaluated the FPR
of fully synchronized replicas, which corresponds to the
regular versions of the structures. We computed the FPR by
testing 220 fresh random keys that have not been inserted
and checking if they are reported as being contained. We
repeated the experiments five times using different keys and
testing datasets and reported the average values.

Figure 3a and Figure 3b show the FPR of CRBF and CRCF.
For CRBF, the FPR is identical to the regular Bloom filter and
is close to the theoretical value. The value is unaffected by
the distribution scheme or synchronization frequency. This
is because the merged state is always identical to the state
resulting from local adds. For CRCF, the FPR varies across
configurations. When the filters are merged relatively fre-
quently, the FPR drops as the distribution becomesmore even.
This can be explained by the counterbalancing behaviors of
add and merge. merge is inclined to introduce overflowing
buckets to accommodate all the entries in the merged filters.
Conversely, add does not introduce overflowing buckets and
acts to balance them. In case of an even split, both repli-
cas have many full buckets before merging. This leads to
more overflowing buckets in the merged state, making the
subsequent adds more likely to fail. The filter thus reports a
lower load factor and, therefore, a lower FPR. However, if the
filters are infrequently merged, the relation between those
factors inverts. This is due to the uptick in the load factor.

Junbo Xiong, Ege Berkay Gulcan, and Burcu Kulahcioglu Ozkan

Table 1. Serialized sizes of the CRBF, CRCF, and GSet CRDTs.
BPE stands for bytes per element.

CRDT Load
Factor

Serialised
Size (MB)

Serialised
BPE

Compressed
Size (MB)

Compressed
BPE

all
local

CRBF 100% 1.01 1.01 0.91 0.91
CRCF 96% 1.05 1.05 1.04 1.04
GSet 100% 23.07 22.00 17.16 16.37

50-50
split

CRBF 100% 1.01 1.01 0.91 0.91
CRCF 98% 3.73 3.62 1.59 1.54
GSet 100% 23.07 22.00 17.16 16.37

If the workload is split into two replicas evenly, the merged
filters reach a higher load factor, resulting in a higher FPR.
Consequently, we observe that FPR first decreases and then
increases as the synchronization frequency decreases. Yet, all
observed FPR values remain below the theoretical estimates.

Space Efficiency. We evaluated the space efficiency of the
CRBF and CRC compared to keeping the entries in regular
GSet CRDT implementation in Akka [16]. We compared
their serialized sizes, i.e., the number of bytes for network
transmission. We measured and reported their raw sizes and
GZIP compressed sizes, commonly used for web protocols.

Table 1 shows the serialized sizes of CRBF, CRCF, and GSet.
The results show that CRBF and CRCF introduce substantial
space efficiency compared to GSet while maintaining a high
load factor. The size of the CRBF and GSet does not change
across different workload split configurations as they allow
inserting all elements, and they reach the same states in both
configurations. On the other hand, we observe higher sizes
of CRCF in 50-50 split due to the overflowing buckets.

5 Related Work
Recent work utilizes probabilistic data structures in the im-
plementation of CRDTs. The work in [5] introduces Bloom-
CRDT, an OR-Set CRDT that provides the semantics of the
ORSet probabilistically. Unlike ORSet, which uses a set to
record tombstones, BloomCRDT uses a Bloom filter as an
approximation. Recent work [10] explores the use of Age-
Partitioned Bloom Filters (APBFs) in set CRDTs. They show
that using APBFs for CRDT causal context offers improve-
ments in efficiency and memory management. In this work,
we define CRDT versions of the probabilistic data structures.

6 Conclusion and Future Work
This paper introduced conflict-free replicated probabilistic
data types for approximate membership queries in replicated
systems: Conflict-free Replicated Bloom Filter and Conflict-
free Replicated Cuckoo Filter. We provided the specification
and verification of the CRDTs along with their implementa-
tion in an open-source library implementation.

Our ongoing work extends the library of conflict-free prob-
abilistic data structures with more structures with automated
scaling [27], approximate counting, and frequency queries.

61

CRDTs for Approximate MembershipQueries PaPoC ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Acknowledgements
We would like to thank Kevin De Porre and Elisa Gonzalez
Boix for helpful discussions on using VeriFx.

References
[1] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues,

Nuno M. Preguiça, Mahsa Najafzadeh, and Marc Shapiro. 2015. To-
wards Fast Invariant Preservation in Geo-replicated Systems. ACM
SIGOPS Oper. Syst. Rev. 49, 1 (2015), 121–125. https://doi.org/10.1145/
2723872.2723889

[2] Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen
Clement, Sérgio Duarte, Carla Ferreira, Johannes Gehrke, João Leitão,
Nuno M. Preguiça, Rodrigo Rodrigues, Marc Shapiro, and Viktor
Vafeiadis. 2016. Geo-Replication: Fast If Possible, Consistent If Neces-
sary. IEEE Data Eng. Bull. 39, 1 (2016), 81–92. http://sites.computer.
org/debull/A16mar/p81.pdf

[3] Annette Bieniusa, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro,
Carlos Baquero, Valter Balegas, and Sérgio Duarte. 2012. An optimized
conflict-free replicated set. CoRR abs/1210.3368 (2012). arXiv:1210.3368
http://arxiv.org/abs/1210.3368

[4] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Commun. ACM 13, 7 (1970), 422–426. https://doi.
org/10.1145/362686.362692

[5] Ewout Bongers. 2021. Conflict Free R Tree: A CRDT-based index for P2P
systems. Master’s Thesis. Delft University of Technology.

[6] Alexander Dodd Breslow and Nuwan Jayasena. 2018. Morton Filters:
Faster, Space-Efficient Cuckoo Filters via Biasing, Compression, and
Decoupled Logical Sparsity. Proc. VLDB Endow. 11, 9 (2018), 1041–1055.
https://doi.org/10.14778/3213880.3213884

[7] Russell Brown, Sean Cribbs, Christopher Meiklejohn, and Sam Elliott.
2014. Riak DT map: a composable, convergent replicated dictionary.
In Proceedings of the First Workshop on the Principles and Practice of
Eventual Consistency, PaPEC@EuroSys 2014, April 13, 2014, Amsterdam,
The Netherlands, Marc Shapiro (Ed.). ACM, 1:1. https://doi.org/10.
1145/2596631.2596633

[8] Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor.
2006. Longest prefix matching using bloom filters. IEEE/ACM Trans.
Netw. 14, 2 (2006), 397–409. https://doi.org/10.1145/1217619.1217632

[9] Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzen-
macher. 2014. Cuckoo Filter: Practically Better Than Bloom. In Pro-
ceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, CoNEXT 2014, Sydney, Aus-
tralia, December 2-5, 2014, Aruna Seneviratne, Christophe Diot, Jim
Kurose, Augustin Chaintreau, and Luigi Rizzo (Eds.). ACM, 75–88.
https://doi.org/10.1145/2674005.2674994

[10] Pedro Henrique Fernandes and Carlos Baquero. 2023. Probabilistic
Causal Contexts for Scalable CRDTs. In Proceedings of the 10th Work-
shop on Principles and Practice of Consistency for Distributed Data,
PaPoC 2023, Rome, Italy, 8 May 2023, Elisa Gonzalez Boix and Pierre
Sutra (Eds.). ACM, 1–8. https://doi.org/10.1145/3578358.3591331

[11] Andrii Gakhov. 2019. Probabilistic data structures and algorithms for
big data applications. BoD–Books on Demand.

[12] Google. 2016. Guava Explained. https://github.com/google/guava/wiki.
Accessed: May 31, 2024.

[13] Thomas Mueller Graf and Daniel Lemire. 2019. Xor Filters: Faster and
Smaller Than Bloom and Cuckoo Filters. CoRR abs/1912.08258 (2019).
arXiv:1912.08258 http://arxiv.org/abs/1912.08258

[14] Adam Kirsch and Michael Mitzenmacher. 2006. Less Hashing, Same
Performance: Building a Better Bloom Filter. In ESA (Lecture Notes in
Computer Science, Vol. 4168). Springer, 456–467.

[15] Martin Kleppmann and Alastair R. Beresford. 2017. A Conflict-Free
Replicated JSON Datatype. IEEE Trans. Parallel Distributed Syst. 28, 10
(2017), 2733–2746. https://doi.org/10.1109/TPDS.2017.2697382

[16] Lightbend. 2011. Akka Documentation, Replicated data types.
https://doc.akka.io/libraries/akka-core/current/typed/distributed-
data.html#replicated-data-types. Accessed: January 19, 2025.

[17] Mahsa Najafzadeh, Marc Shapiro, Valter Balegas, and Nuno M.
Preguiça. 2013. Improving the Scalability of Geo-replication with
Reservations. In IEEE/ACM 6th International Conference on Utility and
Cloud Computing, UCC 2013, Dresden, Germany, December 9-12, 2013.
IEEE Computer Society, 441–445. https://doi.org/10.1109/UCC.2013.87

[18] Rasmus Pagh and Flemming Friche Rodler. 2001. Cuckoo Hashing.
In Algorithms - ESA 2001, 9th Annual European Symposium, Aarhus,
Denmark, August 28-31, 2001, Proceedings (Lecture Notes in Computer
Science, Vol. 2161), Friedhelm Meyer auf der Heide (Ed.). Springer,
121–133. https://doi.org/10.1007/3-540-44676-1_10

[19] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. 2023. Ver-
iFx: Correct Replicated Data Types for the Masses. In 37th European
Conference on Object-Oriented Programming, ECOOP 2023, July 17-21,
2023, Seattle, Washington, United States (LIPIcs, Vol. 263), Karim Ali
and Guido Salvaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 9:1–9:45. https://doi.org/10.4230/LIPICS.ECOOP.2023.9

[20] Nuno Preguiça, Joan Manuel Marques, Marc Shapiro, and Mihai Letia.
2009. A Commutative Replicated Data Type for Cooperative Editing.
In 29th IEEE International Conference on Distributed Computing Systems
(ICDCS 2009). IEEE, 395–403. https://doi.org/10.1109/ICDCS.2009.20

[21] Nuno M. Preguiça. 2018. Conflict-free Replicated Data Types: An
Overview. CoRR abs/1806.10254 (2018). arXiv:1806.10254

[22] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of convergent and commutative repli-
cated data types. Ph. D. Dissertation. Inria–Centre Paris-Rocquencourt;
INRIA.

[23] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Stabilization, Safety, and
Security of Distributed Systems SSS 2011, Grenoble, France, October 10-12,
2011. Proceedings (Lecture Notes in Computer Science, Vol. 6976), Xavier
Défago, Franck Petit, and Vincent Villain (Eds.). Springer, 386–400.
https://doi.org/10.1007/978-3-642-24550-3_29

[24] Haoyu Song, Sarang Dharmapurikar, Jonathan S. Turner, and John W.
Lockwood. 2005. Fast hash table lookup using extended bloom filter: an
aid to network processing. In Proceedings of the ACM SIGCOMM 2005
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Philadelphia, Pennsylvania, USA, August
22-26, 2005, Roch Guérin, Ramesh Govindan, and Greg Minshall (Eds.).
ACM, 181–192. https://doi.org/10.1145/1080091.1080114

[25] Junbo Xiong. 2024. A Java / Scala library for conflict-free repli-cated
probabilistic filters. https://github.com/C6H5-NO2/probfilter.
Accessed: January 19, 2025.

[26] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2009. Logoot: A Scalable
Optimistic Replication Algorithm for Collaborative Editing on P2P Net-
works. In 29th IEEE International Conference on Distributed Computing
Systems (ICDCS 2009), 22-26 June 2009, Montreal, Québec, Canada. IEEE
Computer Society, 404–412. https://doi.org/10.1109/ICDCS.2009.75

[27] Junbo Xiong. 2024. Conflict-Free Replicated Probabilistic Filter.
Master’s Thesis. Delft University of Technology.

[28] Minlan Yu, Alex Fabrikant, and Jennifer Rexford. 2009. BUFFALO:
bloom filter forwarding architecture for large organizations. In Proceed-
ings of the 2009 ACM Conference on Emerging Networking Experiments
and Technology, CoNEXT 2009, Rome, Italy, December 1-4, 2009, Jörg
Liebeherr, Giorgio Ventre, Ernst W. Biersack, and Srinivasan Keshav
(Eds.). ACM, 313–324. https://doi.org/10.1145/1658939.1658975

[29] Yuqi Zhang, Lingzhi Ouyang, Yu Huang, and Xiaoxing Ma. 2023.
Conflict-free Replicated Priority Queue: Design, Verification and Eval-
uation. In Proceedings of the 14th Asia-Pacific Symposium on Internet-
ware, Internetware 2023, Hangzhou, China, August 4-6, 2023, Hong Mei,
Jian Lv, Zhi Jin, Xuandong Li, Xiaohu Yang, and Xin Xia (Eds.). ACM,
302–312. https://doi.org/10.1145/3609437.3609452

62

https://doi.org/10.1145/2723872.2723889
https://doi.org/10.1145/2723872.2723889
http://sites.computer.org/debull/A16mar/p81.pdf
http://sites.computer.org/debull/A16mar/p81.pdf
https://arxiv.org/abs/1210.3368
http://arxiv.org/abs/1210.3368
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.14778/3213880.3213884
https://doi.org/10.1145/2596631.2596633
https://doi.org/10.1145/2596631.2596633
https://doi.org/10.1145/1217619.1217632
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/3578358.3591331
https://github.com/google/guava/wiki
https://arxiv.org/abs/1912.08258
http://arxiv.org/abs/1912.08258
https://doi.org/10.1109/TPDS.2017.2697382
https://doc.akka.io/libraries/akka-core/current/typed/distributed-data.html##replicated-data-types
https://doc.akka.io/libraries/akka-core/current/typed/distributed-data.html##replicated-data-types
https://doi.org/10.1109/UCC.2013.87
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.4230/LIPICS.ECOOP.2023.9
https://doi.org/10.1109/ICDCS.2009.20
https://arxiv.org/abs/1806.10254
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/1080091.1080114
https://github.com/C6H5-NO2/probfilter
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1145/1658939.1658975
https://doi.org/10.1145/3609437.3609452

	Abstract
	1 Introduction
	2 Data Structures for Approximate Queries
	2.1 Bloom Filter
	2.2 Cuckoo Filter

	3 Conflict-free Data Structures for Approximate Membership
	3.1 Conflict-free Replicated Bloom Filter (CRBF)
	3.2 Conflict-Free Replicated Cuckoo Filter (CRCF)
	3.3 Verification

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

